Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
ответ:Номер 1
ЕК||АD при секущей FB,т к
<МFB=<АВF=56 градусов,как внутренние накрест лежащие
<С+<М=180 градусов,как односторонние при EK||AD и секущей СМ,тогда
<М=180-72=108 градусов
Номер 2
Углы при основании равнобедренного треугольника равны между собой
<1=56 градусов
<2=<3=(180-56):2=62 градуса
Номер 3
<АВЕ=<DBC=15 градусов,как вертикальные
Треугольник DBC
<D=48 градусов
<B=15 градусов
<С=180-(48+15)=180-63=117 градусов
Треугольник АСF
<F=64 градуса
<DCB+<ACF=180 градусов,как смежные
<АСF=180-117=63 градуса
<А=180-(64+63)=180-127=53 градуса
Объяснение:
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°ответ:Номер 1
ЕК||АD при секущей FB,т к
<МFB=<АВF=56 градусов,как внутренние накрест лежащие
<С+<М=180 градусов,как односторонние при EK||AD и секущей СМ,тогда
<М=180-72=108 градусов
Номер 2
Углы при основании равнобедренного треугольника равны между собой
<1=56 градусов
<2=<3=(180-56):2=62 градуса
Номер 3
<АВЕ=<DBC=15 градусов,как вертикальные
Треугольник DBC
<D=48 градусов
<B=15 градусов
<С=180-(48+15)=180-63=117 градусов
Треугольник АСF
<F=64 градуса
<DCB+<ACF=180 градусов,как смежные
<АСF=180-117=63 градуса
<А=180-(64+63)=180-127=53 градуса
Объяснение: