20см
Объяснение:
1) Стороны (отрезки) обычно обозначаются большими буквами: АС, AD и угол ACD,
а маленькими буквами обозначают, например, прямая а, прямая b и т. д.
2) выч (И) сления = чИсла
ABCD - прямоугольник
АС - его диагональ
Треугольник ACD:
AC = 12 см
AD = 10 см
L ADC = 90 град.
L ACD = 60 град.
=>
L CAD = 180 - (L ADC + L ACD) = 180 - (90 + 60) = 30 град.
Против угла в 30 град. лежит сторона = 1\2 гипотенузы =>
CD = 1\2 * AC = 1\2 * 12 = 6 см - вторая сторона прямоугольника
(хотя если решать по теореме Пифагора, то
CD^2 = AC^2 - AD^2 = 12^2 - 10^2 = 144 - 100 = 44 = 6,63 cм,
но это неточность составителя этой задачи, то есть треугольника с АС = 12, AD = 10 и углом ACD в 60 град. быть не может).
Но раз в условии дан угол, будем считать, что CD = 6 cм.
S (ABCD) = AD * CD = 10 * 6 = 60 см^2 - площадь ABCD
P (ABCD) = 2 * (AD + CD) = 2 * (10 + 6) = 32 см - периметр ABCD
Решение:
ВD- высота, медиана и биссектрисса равнобедренного треугольника ∆АВС;
АD=DC;
DC=AC/2=16/2=8ед.
∆ВDC- прямоугольный треугольник
Теорема Пифагора
ВD=√(BC²-DC²)=√(17²-8²)=
=√((17+8)(17-8))=√(25*9)=5*3=15ед.
ответ: х=15ед.
№6)
RN=NM=6ед ∆RNM-равносторонний;
RK- высота, медиана и биссектрисса.
NK=KM
NK=NM/2=6/2=3
∆RKN- прямоугольный треугольник
По теореме Пифагора
RK=√(RN²-NK²)=√(6²-3²)=
=√((6-3)(6+3))=√(3*9)=3√3ед.
ответ: х=3√3ед.
№7)
РТ=PR/2=x/2.
По теореме Пифагора
RP²-PT²=RT²
Составляем уравнение.
х²-(х/2)²=8²
х²-х²/4=64. |×4.
4х²-х²=256
3х²=256. |÷3
х²=256/3
х=√(256/3)
х=16/√3
х=16√3/3 ед
ответ: х=16√3/3 ед
20см
Объяснение:
1) Стороны (отрезки) обычно обозначаются большими буквами: АС, AD и угол ACD,
а маленькими буквами обозначают, например, прямая а, прямая b и т. д.
2) выч (И) сления = чИсла
ABCD - прямоугольник
АС - его диагональ
Треугольник ACD:
AC = 12 см
AD = 10 см
L ADC = 90 град.
L ACD = 60 град.
=>
L CAD = 180 - (L ADC + L ACD) = 180 - (90 + 60) = 30 град.
Против угла в 30 град. лежит сторона = 1\2 гипотенузы =>
CD = 1\2 * AC = 1\2 * 12 = 6 см - вторая сторона прямоугольника
(хотя если решать по теореме Пифагора, то
CD^2 = AC^2 - AD^2 = 12^2 - 10^2 = 144 - 100 = 44 = 6,63 cм,
но это неточность составителя этой задачи, то есть треугольника с АС = 12, AD = 10 и углом ACD в 60 град. быть не может).
Но раз в условии дан угол, будем считать, что CD = 6 cм.
S (ABCD) = AD * CD = 10 * 6 = 60 см^2 - площадь ABCD
P (ABCD) = 2 * (AD + CD) = 2 * (10 + 6) = 32 см - периметр ABCD