У Вас 30° используется для для нахождения радиуса, Вы верно заметили, что против угла в 30° лежит катет АО, равный половине гипотенузы АК, просто решение свелось к теореме Пифагора , если ВЫ в 11 кл., то наверняка уже изучили тригонометрию. Очевидно, учитель ожидал, что радиус найдете как произведение АК на косинус 30°, т.е. 12*√3/2=6√3, потом возводите в квадрат этот радиус, получаете все те же 108, умножаете на π, округляя до целых, ну, это тоже не такая уж оплошность. Можно и оставить 108π, или взять π≈3.14
Но преимущество Вашего сразу получаете квадрат радиуса, т.е. 108. Докажите учителю, что решение верное, возможно там были еще какие единицы, а Вы их не учли, см или м, тогда в ответе эти единицы будут в квадрате.
∠BAD+∠BCD = 180°;
∠BCA = 180°-∠BAD = 180°-120° = 60°
Вписанные углы опирающиеся на одну дугу равны.∠CAD - вписанный и опирается на ∪CD
∠CBD - вписанный и опирается на ∪CD
∠CAD = ∠CBD
По теореме синусов в треугольнике CBD:По основному тригонометрическому тождеству (sin²α+cos²α=1):Пусть BC=x, тогда 0<x<4.
Рассмотрим случай, когда cos(CBD) = 1/7По теореме косинусов в треугольнике CBD:
x²-2x-15 = 0
D = (-2)²-4·1·(-15) = 4+60 = 8²
x₁ = (2+8)/2 = 10/2 = 5
x₂ = (2-8)/2 = -6/2 = -3
Ни один корень не подходит под условие 0<x<4.
Теперь случай, когда cos(CBD) = -1/7По теореме косинусов в треугольнике CBD:
x²+2x-15 = 0
D = 2²-4·1·(-15) = 4+60 = 8²
x₃ = (-2+8)/2 = 6/2 = 3
x₄ = (-2-8)/2 = -10/2 = -5
0 < x₃ < 4
x = 3 удовлетворяет условию, значит cos(CBD) = -1/7.
cos(CBD) < 0, а sin(CBD) > 0. Поэтому ∠CBD - угол второй четверти, тогда ∠CBD = arccos(-1/7)
∠CAD = arccos(-1/7)
ответ: arccos(-1/7).
У Вас 30° используется для для нахождения радиуса, Вы верно заметили, что против угла в 30° лежит катет АО, равный половине гипотенузы АК, просто решение свелось к теореме Пифагора , если ВЫ в 11 кл., то наверняка уже изучили тригонометрию. Очевидно, учитель ожидал, что радиус найдете как произведение АК на косинус 30°, т.е. 12*√3/2=6√3, потом возводите в квадрат этот радиус, получаете все те же 108, умножаете на π, округляя до целых, ну, это тоже не такая уж оплошность. Можно и оставить 108π, или взять π≈3.14
Но преимущество Вашего сразу получаете квадрат радиуса, т.е. 108. Докажите учителю, что решение верное, возможно там были еще какие единицы, а Вы их не учли, см или м, тогда в ответе эти единицы будут в квадрате.