СН - высота, проведенная к гипотенузе прямоугольного треугольника АВС. В прямоугольном треугольнике ВСН (<H=90°) угол НСВ равен 90° - <B (так как сумма острых углов прямоугольного треугольника равна 90°). Точно так же в прямоугольном треугольнике АВС (<С=90°) угол САВ равен 90° - <B. Следовательно, прямоугольные треугольники САН и ВСН подобны по острому углу (первый признак), так как <CAH=<HCB=(90° - <B) (доказано выше). Кроме того, треугольники САН и НСВ подобны исходному треугольнику АВС по этому же острому углу.
R-радиус; d-диаметр; h-высота; Sбок--площадь боковой поверхности; Sосн--площадь основания; V--обьем; l-длина окружности; П-число Пи; ^ -степень. Дано; равносторонний цилиндр; тогда его высота= диаметру основания; длина окр=16П; тогда сперва ищем радиус=длина окружности делить на 2П; теперь мы можем найти диаметр= 2*радиус; и он=высоте цилиндра= 2*радиус; ищем площадь боковой поверхности, подставляя в формулу sбок=2пrh найденные данные; чтобы найти обьем нужно сперва площадь основания найти sосн=Пr^2; и тогда уже ищем обьем по формуле v=sосн*h Решение; r=l/2П; -->> 16П/2П=8; d=2r=2*8=16; d=h; h=2r=2*8=16; sбок=2Пrh; -->> 2П*8*16= 2П*128=256П см^2; v=sосн*h;-->> sосн=Пr^2; -->>П*8^2=64п см^2; v=sосн*h; -->> v=64п*16= 1024П см^3; ответ: площадь боковой поверхности цилинда 256П см^2; обьем 1024П см^3.
СН - высота, проведенная к гипотенузе прямоугольного треугольника АВС. В прямоугольном треугольнике ВСН (<H=90°) угол НСВ равен 90° - <B (так как сумма острых углов прямоугольного треугольника равна 90°). Точно так же в прямоугольном треугольнике АВС (<С=90°) угол САВ равен 90° - <B. Следовательно, прямоугольные треугольники САН и ВСН подобны по острому углу (первый признак), так как <CAH=<HCB=(90° - <B) (доказано выше). Кроме того, треугольники САН и НСВ подобны исходному треугольнику АВС по этому же острому углу.
Что и требовалось доказать.