Сначала найдем периметр основания. 5+12+13=30см. Апофемой в данной пирамиде будет являться ребро, перепендикулярное плоскости основания, которое задано нам по условию.
Найдем площадь основания. Так как по условию в основании прямоугольный треугольник, мы можем найти его площадь по формуле Sосн=1/2bc, где b и c - катеты прямоугольного треугольника
Sосн=1/2*5*12=30 см^2
Площадь боковой поверхности пирамиды равна половине произведения периметра основания и апофемы: Sб=1/2P*l
Sб=1/2*30*9=135 см^2/
Площадь полной поверхности пирамиды равна сумме площади основания и площади боковой поверхности пирамиды
Проведем BK⊥DA. Тогда ВК = 16.
ΔВКА = ΔСКА по двум сторонам и углу между ними (ВА = СА, АК - общая, ∠КАВ = ∠КАС как углы равных треугольников) ⇒∠СКА = ∠ВКА = 90° ⇒
∠ВКС = 120° - линейный угол двугранного угла при боковом ребре пирамиды.
ΔВКС: по теореме косинусов:
CB² = CK² + BK² - 2CK·BK·cos120°
CB² = 2·256 + 2·256·1/2 = 3·256
CB = 16√3 - сторона основания
ΔКАВ: sin∠KAB = KB/AB = 16/(16√3) = 1/√3
Проведем DH⊥BC. DH - высота и медиана ⇒СН = СВ/2 = 8√3
∠DCB = ∠DAB ⇒
sin∠DCB = 1/√3
cos∠DCB =√(1 - sin²∠DCB) = √(1 - 1/3) = √(2/3)
tg∠DCB =1/√3 : √(2/3) = 1/√2
ΔDCH:
tg∠DCH = DH/CH
DH = CH · tg∠DCH = 8√3 ·1/√2 = 4√6
Сначала найдем периметр основания. 5+12+13=30см. Апофемой в данной пирамиде будет являться ребро, перепендикулярное плоскости основания, которое задано нам по условию.
Найдем площадь основания. Так как по условию в основании прямоугольный треугольник, мы можем найти его площадь по формуле Sосн=1/2bc, где b и c - катеты прямоугольного треугольника
Sосн=1/2*5*12=30 см^2
Площадь боковой поверхности пирамиды равна половине произведения периметра основания и апофемы: Sб=1/2P*l
Sб=1/2*30*9=135 см^2/
Площадь полной поверхности пирамиды равна сумме площади основания и площади боковой поверхности пирамиды
Sп=Sосн+Sб
Sп=30+135=165 см^2
ответ: 165 см^2