через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
Известно, что через прямую и не лежащую на ней точку можно провести единственную плоскость. Предположим, что какие-то 9 точек лежат на одной прямой. Тогда десятая точка либо лежит на этой же прямой, но тогда все 10 точек лежат на одной прямой, а значит, и в одной плоскости. Либо десятая точка не лежит на этой прямой, но тогда через неё и прямую можно провести единственную плоскость, и все 10 точек будут лежать в этой плоскости, что противоречит условию. Значит, среди 10 точек, не лежащих в одной плоскости, никакие 9 не лежат на одной прямой.
ответ:
по следствию 2 из аксиомы 1 стереометрии:
через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
тогда отношение а₁в₁: а₂в₂=3: 4.
12: а₂в₂=3/4
3 а₂в₂=48 см
а₂в₂=16 см
Известно, что через прямую и не лежащую на ней точку можно провести единственную плоскость. Предположим, что какие-то 9 точек лежат на одной прямой. Тогда десятая точка либо лежит на этой же прямой, но тогда все 10 точек лежат на одной прямой, а значит, и в одной плоскости. Либо десятая точка не лежит на этой прямой, но тогда через неё и прямую можно провести единственную плоскость, и все 10 точек будут лежать в этой плоскости, что противоречит условию. Значит, среди 10 точек, не лежащих в одной плоскости, никакие 9 не лежат на одной прямой.