1) так как биссектриса DB на идет на основание равнобедренного треугольника то DB является так же высотой и медианой То есть EB=BF ∠ABE=∠ABF=90° в треугольниках ΔABE и ΔABF сторона AB общая а EB=BF ∠ABE=∠ABF это значит что они ровны ΔABE=ΔABF следует что гипотенузы ровны AE=AF, из того следует что ΔAEF равнобедренный!
2) есть ∠AKH=∠BKH и KH является высотой, то KH для треугольника AKB является так же медианой и биссектрисей Отсюда следует что AH=HB, значит CH для ACB так же медиана и биссектриса => наш треугольник ABC равнобедренный
3) так как по условии NC : CP = 3 : 2 и PC=4см то NC=CP*3/2=4*3/2=6 NC=6см, NP=NC+CP=6+4=10см допустим NM и DC пересекаются в точке O так как NM биссектриса то ∠DNM=∠CNM угол ∠NOD=∠NOC=90° отсюда следует что ΔDON=ΔCON( NO общий и два угла) DN=NC=6см
ответ 6см
4) Допустим боковые стороны равнобедренного треугольника x см основание будет x+4 периметр будет P=x+x+x+4=3x+4 по условии P=46 3x+4=46 3x=42 x=14
ответ 14,14,18
5)Допустим основание равнобедренного треугольника x см боковые будут 0,8x периметр будет P=x+0,8x+0,8x по условии P=78 2,6x=78 x=30
То есть EB=BF ∠ABE=∠ABF=90° в треугольниках ΔABE и ΔABF сторона AB общая а EB=BF ∠ABE=∠ABF это значит что они ровны ΔABE=ΔABF
следует что гипотенузы ровны AE=AF, из того следует что ΔAEF равнобедренный!
2) есть ∠AKH=∠BKH и KH является высотой, то KH для треугольника AKB является так же медианой и биссектрисей
Отсюда следует что AH=HB, значит CH для ACB так же медиана и биссектриса => наш треугольник ABC равнобедренный
3) так как по условии NC : CP = 3 : 2 и PC=4см то NC=CP*3/2=4*3/2=6
NC=6см, NP=NC+CP=6+4=10см
допустим NM и DC пересекаются в точке O
так как NM биссектриса то ∠DNM=∠CNM угол ∠NOD=∠NOC=90°
отсюда следует что ΔDON=ΔCON( NO общий и два угла)
DN=NC=6см
ответ 6см
4) Допустим боковые стороны равнобедренного треугольника x см
основание будет x+4
периметр будет P=x+x+x+4=3x+4 по условии P=46
3x+4=46
3x=42
x=14
ответ 14,14,18
5)Допустим основание равнобедренного треугольника x см
боковые будут 0,8x
периметр будет P=x+0,8x+0,8x по условии P=78
2,6x=78
x=30
ответ 30, 24, 24
1
теорема косинусов
а)
ВС^2=AB^2+AC^2 - 2*AB*AC*cosA=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
BC=√97 см
б)
AC^2=AB^2+BC^2 - 2*AB*BC*cosB=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
АС=√127 см
2
теорема косинусов
а)
cos120= - cos60
NP^2=MN^2+MP^2 -2 MN*MP*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
NP=√379 см
б)
NP^2=
3
cos120= - cos60
а) меньшую диагональ (ВD)
лежит напротив острого угла <60
BD^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
BD=√52=2√13 см
б) большую диагональ (АС)
лежит напротив тупого угла <120
AC^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
AC=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos<A
196=64+100 - 160*cos<A
32= - 160*cos<A
cos<A= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos<B
400=144+196-336* cos<B
60 =-336* cos<B
cos<B = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника <A=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sinA=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол <С=180-<A-<B=180-30-40=110
по теореме синусов
AC/sin<B=BC/sin<A=AB/sin<C=2R
AC/sin40=BC/sin30=16/sin110
AC=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
BC= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
AB/sin<C=2R
R= AB/(2*sin<C)=16 / (2*sin110)=8/ sin110 = 8.5 см
7
8
углы параллелограмма А и В - односторонние
<A - напротив диагонали d1
<B=180-<A - напротив диагонали d2
cosA= - cosB=
d1^2=a^2+b^2-2ab*cosA
d2^2= a^2+b^2-2ab*cosB = a^2+b^2-2ab*(-cosA)= a^2+b^2+2ab*cosA
d1^2+d2^2 = a^2+b^2-2ab*cosA + a^2+b^2 +2ab*cosA = a^2+b^2 + a^2+b^2 = 2 *( a^2+b^2 )
ДОКАЗАНО сумма квадратов диагоналей равна сумме квадратов (ЧЕТЫРЕХ)сторон
9
10
11
12
13