В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Himop
Himop
22.03.2021 20:29 •  Геометрия

Центр вписанной в остроугольный равнобедренный треугольник окружности делит высоту, проведённую к основанию ,в отношении 5: 3. найдите радиус описанной окружности,если высота,проведенная к основанию, равна 32 см.

Показать ответ
Ответ:
unterned
unterned
06.07.2020 22:59
 Итак, высота  ВН треугольника АВС, проведенная к основанию, равна 32. Она делится центром вписанной окружности в отношении 5:3. Значит ВО = 32:8*5=20, а ОН = 32:8*3=12. ОН, между прочим, это радиус вписанной окружности и ОН=ОК=ОМ. Из прямоугольного треугольника ОКВ найдем по Пифагору ВК=√(ВО²-ОК²) = √(400-144) = 16. Значит ВК=ВМ=16см. Отметим, что КС=НС=НА=АМ = Х (касательные из одной точки). Из прямоугольного тр-ка НВС по Пифагору ВН² = (ВК+Х)² -Х² или 32² = (16+Х)²-Х², откуда 32Х=768, а Х=24. Итак, мы нашли все стороны треугольника: АВ=ВС=(16+24)=40см, а АС=24+24=48.
Радиус описанной окружности находим по формуле:
R=a*b*c/4S, где a,b,c-стороны тр-ка, а S - его площадь.
S = (1/2)*ВН*АС = (1/2)*32*48 = 768.
R= 76800/4*768 = 25см.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота