Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.
Основание треугольника сечения - это диагональ d квадрата основания.
Она равна 18√2 см. Высота пирамиды делит её пополам.
Поэтому d/2 = 9√2 см.
Находим длины боковых рёбер L:
2L² = d².Отсюда L = √(d²/2) =d/√2 = 18√2/√2 = 18 см.
Находим высоту Н пирамиды:
Н = √(L² - (d/2)²) = √(18² - (9√2)²) = √(324 - 162) = √162 = 9√2 см.
(это можно было найти и короче: ведь сечение - равнобедренный прямоугольный треугольник и его высота равна половине гипотенузы).
Получаем ответ: V = (1/3)SoH = (1/3)*18*18*9√2 = 972√2 ≈ 1374,62 см³.