Часть в Запишите ответ к заданию 2, 2°. AM — биссектриса прямого угла равнобедренного прямоугольного треугольника АВС. Найдите уг лы треугольника ABм.
Рассмотрим ΔABD - это равнобедренный треугольник с равными углами B и D, так как он является половиной ромба ABCD. Из ∠В при основании равнобедренного ΔABD проведена биссектриса ВЕ, т.к. в условии дано, что ∠АВЕ=∠DBE.
Теперь рассмотрим ΔEBD: по условию известно, что ∠BED=120°, также из чертежа видно, что ∠EDB треугольника EBD=∠ADB треугольника ABD, это общий для них угол.
Примем за х величину ∠EBD в ΔEBD,
тогда ∠EDB=180-(∠BED+∠EBD)=180-(120-х)=180-120-х=60-х
∠ABD в ΔABD будет равен х+х=2х, т.к. ВЕ биссектриса этого угла и ∠EBD+∠ABE как раз составляют ∠ABD.
Далее составляем уравнение: 2х=60-х, так как угол D общий в этих Δ.
Решаем: 2х+х=60
3х=60
х=60/3=20° это ∠EBD
∠ABD=2*20=40°, значит ∠АВС ромба будет равен 40*2=80°, т.к. диагональ BD ромба является биссектрисой ∠ АВС. ∠ADC=∠АВС=80°, т.к. противоположные углы в ромбе равны.
∠BAD ΔABD=180-40-40=100° и он же является ∠А в ромбе ABCD, значит ∠А ромба ABCD = 100°. ∠С тоже=100°, т.к. он противоположен ∠А.
Таким образом, в ромбе ABCD: ∠A=∠C=100° и ∠B=∠D=80°
Ну конечно в ЕГЭ нужно все подробно расписывать там по 1,2 признаку подобия и тд. Думаю, сам как нужно распишешь....
Проведем KO∥AA1
И сделаем проекцию KM на пл ABC
Это будет прямая OM
Рассмотрим плоскость основания, в нем проведем высоту BH-она делит основание AC пополам, так как по условию треугольник равнобедренный
Но тут не трудно заметить, что △AMO подобен △AHB с коэффициентом подобия равным 2. Значит MO∥BH и MO перпендикулярно AC
Теперь т о 3-х перпендикулярах. Если прямая перпендикулярна проекции прямой на плоскость. То такая прямая перпендикулярна этой прямой.
У нас MO перпендикулярна AC значит по т о 3-х перпендикулярах KM перпендикулярна прямой AC ч.т.д
Рассмотрим ΔABD - это равнобедренный треугольник с равными углами B и D, так как он является половиной ромба ABCD. Из ∠В при основании равнобедренного ΔABD проведена биссектриса ВЕ, т.к. в условии дано, что ∠АВЕ=∠DBE.
Теперь рассмотрим ΔEBD: по условию известно, что ∠BED=120°, также из чертежа видно, что ∠EDB треугольника EBD=∠ADB треугольника ABD, это общий для них угол.
Примем за х величину ∠EBD в ΔEBD,
тогда ∠EDB=180-(∠BED+∠EBD)=180-(120-х)=180-120-х=60-х
∠ABD в ΔABD будет равен х+х=2х, т.к. ВЕ биссектриса этого угла и ∠EBD+∠ABE как раз составляют ∠ABD.
Далее составляем уравнение: 2х=60-х, так как угол D общий в этих Δ.
Решаем: 2х+х=60
3х=60
х=60/3=20° это ∠EBD
∠ABD=2*20=40°, значит ∠АВС ромба будет равен 40*2=80°, т.к. диагональ BD ромба является биссектрисой ∠ АВС. ∠ADC=∠АВС=80°, т.к. противоположные углы в ромбе равны.
∠BAD ΔABD=180-40-40=100° и он же является ∠А в ромбе ABCD, значит ∠А ромба ABCD = 100°. ∠С тоже=100°, т.к. он противоположен ∠А.
Таким образом, в ромбе ABCD: ∠A=∠C=100° и ∠B=∠D=80°
Вроде бы всё...
Объяснение: