1)Формула площади параллелограмма выглядит так: S=h*b,где b - основание параллелограмма, h - высота, проведенная к этому основанию. Пусть h=x, тогда b=2x. Составим уравнение: х*2х=8 см2; 2х^2=8; х^2=4; х=2=h. Теперь найдем основание: 2*2=4 см. 2) В параллелограмме противоложные стороны попарно равны. Значит, можно опять составить уравнение: 2*4+2х=20см, где 2*4 - две известные стороны,2х - две неизвестные стороны, а 20 см - периметр. Решаем: 8+2х=20; 2х=12; х=6. ответ: 1) 2 см; 2) 4 см; 3) 6 см.
SO=5√2см
S(∆SAC)=50см²
S(ABCD)=100см²
Объяснение:
Дано:
SABCD- пирамида.
ABCD- квадрат.
SC=SB=SA=SD=10см.
<SCO=45°
SO=?
S(∆SAC)=?
S(ABCD)=?
Решение
Рассмотрим треугольник ∆SOC
<SOC=90°; <SCO=45°; <OSC=45°.
Треугольник ∆SOC- прямоугольный, равнобедренный. SO=OC.
Пусть ОС будет х см, тогда SO тоже будет х см.
По теореме Пифагора SC²=SO²+OC², составляем уравнение.
х²+х²=10²
2х²=100
х=√50
х=5√2 см SO и ОС (высота пирамиды и половина диагонали квадрата).
SO=5√2 см.
АС=2*ОС=2*5√2=10√2 см.
S(∆SAC)=1/2*AC*SO=1/2*10√2*5√2=50см² площадь диагонального сечения.
AB=AC/√2=10√2/√2=10см сторона квадрата.
S(ABCD)=AB²=10²=100см²