1. За двома сторонами і кутом між ними (АВ=СД, ВД - спільна сторона, кути АВД і СДВ рівні).
Вообще, более правильным был бы ответ за двома катетами, так как это прямоугольные треугольники, но такого варианта нету.
2. За трьома сторонами (АВ=СД, ВС=АД, АС - спільна сторона).
3. АВСД - паралелограм, тому ВС||АД. За властивістю внутрішніх різносторонніх кутів, кут САД=ВСА=20°.
4. Трикутник KNL - рівнобедрений, оскільки KN=KL. KO перпендикулярно NL, тому KO - висота трикутника. За властивістю рівнобедреного трикутника, висота є медіаною і бісектрисою, тому KO - медіана трикутника KNL
1. За двома сторонами і кутом між ними (АВ=СД, ВД - спільна сторона, кути АВД і СДВ рівні).
Вообще, более правильным был бы ответ за двома катетами, так как это прямоугольные треугольники, но такого варианта нету.
2. За трьома сторонами (АВ=СД, ВС=АД, АС - спільна сторона).
3. АВСД - паралелограм, тому ВС||АД. За властивістю внутрішніх різносторонніх кутів, кут САД=ВСА=20°.
4. Трикутник KNL - рівнобедрений, оскільки KN=KL. KO перпендикулярно NL, тому KO - висота трикутника. За властивістю рівнобедреного трикутника, висота є медіаною і бісектрисою, тому KO - медіана трикутника KNL
Через точку М(1; —3) и начало координат О(0; 0) проводим прямую.
Вектор ОМ равен (1; -3).
Угловой коэффициент прямой ОМ равен -3/1 = -3.
Уравнение ОМ: у = -3х.
Точка пересечения этой прямой с заданными покажет взаимное положение точек М и О.
Подставим вместо "у" в каждое уравнение значение (-3х).
1) 2х—(-3х) + 5 = 0; 5х = -5, х= -1, значит, точки М и О справа, по одну сторону.
2) х —3*(-3х)у—5 = 0; 10х = 5, х=5 /10, значит, точки М и О по разные стороны.
3) 3х+2* (-3х)—1 = 0; -3х = 1, х= -1/3, значит, точки М и О справа, по одну сторону.
4) х—3*(-3х) + 2 = 0; 10х = -2 , х= -1/5, значит, точки М и О справа, по одну сторону.
5) 10х + 24*(-3х)+15 = 0. -62х = -15, х= 15/62 значит, точки М и О по разные стороны.