1. пусть апофема l и угол между апофемой и плоскостью основания в 30° тогда проекция апофемы на плоскость основания, она же равна радиусу вписанной в основание окружности, r = l*cos(30°) = l√3/2 Радиус вписанной окружности равностороннего треугольника (см рисунок) относится к половине основания пирамиды как tg(30) r/(a/2) = tg(30°) = 1/√3 2r√3=a 2*l√3/2*√3=a 3l = a l = 1/3a Апофема равна одной трети основания Площадь боковой поверхности S = 3*1/2*l*a = 1/2 a^2 = 50 см^2 1/2 a^2 = 50 a^2 = 100 a = 10 см 2 длина малой диагонали основания по теореме косинусов l^2 = 1^2+(2√2)^2-2*1*2√2*cos(45) = 5 l = √5 Если наименьшее диагональное сечение опирается на эту диагональ то высота параллелепипеда l*h = √15 h = √3 Объём параллелепипеда V=1*2√2*sin(45)*h = 2√3
Площадь правильного шестиугольника через его сторону выражается формулой И по условию она равна 6√3 a^2*3√3/2 = 6√3 a^2 = 4 a = 2 см расстояние от вершины основания до центра равно тоже 2, т.к. правильный шестиугольник состоит из 6 равносторонних треугольников. и это расстояние равно радиусу описанной около основания окружности Теперь перейдём в вертикальную плоскость Боковое ребро - гипотенуза, высота - вертикальный катет, радиус описанной окружности - второй, горизонтальный катет Найдём высоту 2^2 + h^2 = 13 h^2 = 9 h = 3 см теперь рассмотрим боковую грань пирамиды апофема пирамиды - один катет, половина ребра основания - второй катет, боковое ребро - гипотенуза. Найдём апофему f^2 + 1^2 = 13 f^2 = 12 f = 2√3 см а площадь одной боковой грани s = 1/2*2*2√3 = 2√3 см^2 всего таких граней 6, да плюс площадь основания S = 6*2√3 + 6√3 = 18√3 см^2
тогда проекция апофемы на плоскость основания, она же равна радиусу вписанной в основание окружности,
r = l*cos(30°) = l√3/2
Радиус вписанной окружности равностороннего треугольника (см рисунок) относится к половине основания пирамиды как tg(30)
r/(a/2) = tg(30°) = 1/√3
2r√3=a
2*l√3/2*√3=a
3l = a
l = 1/3a
Апофема равна одной трети основания
Площадь боковой поверхности
S = 3*1/2*l*a = 1/2 a^2 = 50 см^2
1/2 a^2 = 50
a^2 = 100
a = 10 см
2
длина малой диагонали основания по теореме косинусов
l^2 = 1^2+(2√2)^2-2*1*2√2*cos(45) = 5
l = √5
Если наименьшее диагональное сечение опирается на эту диагональ то высота параллелепипеда
l*h = √15
h = √3
Объём параллелепипеда
V=1*2√2*sin(45)*h = 2√3
И по условию она равна 6√3
a^2*3√3/2 = 6√3
a^2 = 4
a = 2 см
расстояние от вершины основания до центра равно тоже 2, т.к. правильный шестиугольник состоит из 6 равносторонних треугольников. и это расстояние равно радиусу описанной около основания окружности
Теперь перейдём в вертикальную плоскость
Боковое ребро - гипотенуза, высота - вертикальный катет, радиус описанной окружности - второй, горизонтальный катет
Найдём высоту
2^2 + h^2 = 13
h^2 = 9
h = 3 см
теперь рассмотрим боковую грань пирамиды
апофема пирамиды - один катет, половина ребра основания - второй катет, боковое ребро - гипотенуза. Найдём апофему
f^2 + 1^2 = 13
f^2 = 12
f = 2√3 см
а площадь одной боковой грани
s = 1/2*2*2√3 = 2√3 см^2
всего таких граней 6, да плюс площадь основания
S = 6*2√3 + 6√3 = 18√3 см^2