От всех сторон треугольника равноудалена точка пересечения его биссектрис, т.е. центр вписанной окружности.
Вершиной угла, под которым видна гипотенуза ( она - длинная сторона прямоугольного треугольника), является центр вписанной окружности, а его величина - разность между суммой углов треугольника и полусуммой его острых углов
∠АDВ=180°-0,5•(38°+52°)=135°
Заметим, что тупой угол, образованный биссектрисами острых углов прямоугольного треугольника всегда равен 135°, так как их сумма 90°, а полусумма -– 45°
Каждый двугранный угол призмы измеряется величиной его линейного угла. Линейный угол - угол между лучами, проведенными в каждой из плоскостей, образующих двугранный угол, перпендикулярно к одной точке на ребре двугранного угла. Если последовательно провести в гранях призмы линейные углы, получим поперечное сечение, проведенное перпендикулярно боковым ребрам. Это сечение - многоугольник, количество сторон и углов которого - n. Сумма углов многоугольника вычисляется по формуле N=180•(n-2), значит, сумма двугранных углов, прилежащих к боковым ребрам призмы, – 180(n-2)/
От всех сторон треугольника равноудалена точка пересечения его биссектрис, т.е. центр вписанной окружности.
Вершиной угла, под которым видна гипотенуза ( она - длинная сторона прямоугольного треугольника), является центр вписанной окружности, а его величина - разность между суммой углов треугольника и полусуммой его острых углов
∠АDВ=180°-0,5•(38°+52°)=135°
Заметим, что тупой угол, образованный биссектрисами острых углов прямоугольного треугольника всегда равен 135°, так как их сумма 90°, а полусумма -– 45°
Если последовательно провести в гранях призмы линейные углы, получим поперечное сечение, проведенное перпендикулярно боковым ребрам.
Это сечение - многоугольник, количество сторон и углов которого - n.
Сумма углов многоугольника вычисляется по формуле
N=180•(n-2),
значит, сумма двугранных углов, прилежащих к боковым ребрам призмы, – 180(n-2)/