На рисунке изображена пара смежных углов KSP и HSP. У них сторона SP является общей, а у сторон KS и HS есть общая точка S и они расположены на одной прямой.
Относительно смежных углов рассмотрим основную теорему, согласно которой:
Сумма смежных углов равна 180 градусов.
Доказывается теорема очень легко и просто.
Доказ-во.
Согласно рисунка стороны KS и HS расположены на одной прямой, то есть углы KSP и HSP создают развернутый угол, значение которого в градусах равно 180 градусов. Математически это запишется так:
угол KSP + угол HSP = 180 град.
Теорема доказана.
Из данной теоремы существует следствие:
Из равенства двух углов вытекает равенство смежных к ним углов.
Интересно заметить, что когда пересекаются две прямые, то в результате образуется 4 пары смежных углов.
Рассмотрим рисунок, на котором каждый угол обозначен соответствующей цифрой.
Первая пара – углы 1 и 2
Вторая пара – углы 2 и 4
Третья пара – углы 4 и 3
Четвертая пара – углы 3 и 1
Принято рассматривать только одну из всех этих пар, поскольку углы 1 и 4, а также углы 2 и 3 равны как вертикальные.
сумма смежных углов=180°
Объяснение:
На рисунке изображена пара смежных углов KSP и HSP. У них сторона SP является общей, а у сторон KS и HS есть общая точка S и они расположены на одной прямой.
Относительно смежных углов рассмотрим основную теорему, согласно которой:
Сумма смежных углов равна 180 градусов.
Доказывается теорема очень легко и просто.
Доказ-во.
Согласно рисунка стороны KS и HS расположены на одной прямой, то есть углы KSP и HSP создают развернутый угол, значение которого в градусах равно 180 градусов. Математически это запишется так:
угол KSP + угол HSP = 180 град.
Теорема доказана.
Из данной теоремы существует следствие:
Из равенства двух углов вытекает равенство смежных к ним углов.
Интересно заметить, что когда пересекаются две прямые, то в результате образуется 4 пары смежных углов.
Рассмотрим рисунок, на котором каждый угол обозначен соответствующей цифрой.
Первая пара – углы 1 и 2
Вторая пара – углы 2 и 4
Третья пара – углы 4 и 3
Четвертая пара – углы 3 и 1
Принято рассматривать только одну из всех этих пар, поскольку углы 1 и 4, а также углы 2 и 3 равны как вертикальные.