номер 604
а)(x+3y)\2=x\2x*3y+(3y)\2=x\2+6xy+9y\2( если что x\2 это степень)
б)m+5ab)\2=m\2+2m*5ab+(5ab)\2=m\2+20abm+25a\2 b\2
в)(7+a\2)\2=49+14a\2+a\4=a\4+14a\2+49
г)(2x+y\3)\2=(2x)\2+2*2xy\3+(y\3)\2
) (3c\2+y\2)=(3c\2)\2+2*3c\2y+y\2=9c\4+6c\2y+y\2
д)(5x\2-y\3)\3=(5x\2)\2-2*5x\2 y\3+(y\3)\2=25x\4-20x\2y\3+y\6
Номер 751
извини Г не очень поняла:(((
-z\3-p\3=-(z\3+p\3)= -(z+p)*(z\2-pz+p\2)
д) 0,008+y\3z\9= дробь 1|125+y\3z\9=( 1|5+yz\3)*(1|25-1|5yz\3+y\2z\6)
ну или можно записать ещё так:
(0,2+yz\3)*(0,04-0,2yz\3+y\2z\6)
Я надеюсь,что )
сори если есть ошибки
1) пусть x - это катет в левой части трапеции с острым углом 30°
пусть y - это катет в правой части трапеции с острым углом 60°
на них приходится 15 - 7 = 8см, следовательно, x + y = 8
выясним, как связаны x и y
tg60 = h / y => y = h / tg60 = h / √3
tg30 = h / x => x = h / tg30 = 3h / √3
заметим, что x > y в 3 раза
пусть x = 3a, y = a
тогда 3a + a = 8,
a = 2
следовательно, x = 6, y = 2
теперь через тот же тангенс найдем высоту трапеции:
tg60 = h / y => h = tg60 y = 2√3.
2) по теореме Пифагора найдем диагонали трапеции
d1 = sqrt(9² + (2√3)²) = √93
d2 = sqrt(13² + (2√3)²) = √181
номер 604
а)(x+3y)\2=x\2x*3y+(3y)\2=x\2+6xy+9y\2( если что x\2 это степень)
б)m+5ab)\2=m\2+2m*5ab+(5ab)\2=m\2+20abm+25a\2 b\2
в)(7+a\2)\2=49+14a\2+a\4=a\4+14a\2+49
г)(2x+y\3)\2=(2x)\2+2*2xy\3+(y\3)\2
) (3c\2+y\2)=(3c\2)\2+2*3c\2y+y\2=9c\4+6c\2y+y\2
д)(5x\2-y\3)\3=(5x\2)\2-2*5x\2 y\3+(y\3)\2=25x\4-20x\2y\3+y\6
Номер 751
извини Г не очень поняла:(((
-z\3-p\3=-(z\3+p\3)= -(z+p)*(z\2-pz+p\2)
д) 0,008+y\3z\9= дробь 1|125+y\3z\9=( 1|5+yz\3)*(1|25-1|5yz\3+y\2z\6)
ну или можно записать ещё так:
(0,2+yz\3)*(0,04-0,2yz\3+y\2z\6)
Я надеюсь,что )
сори если есть ошибки
1) пусть x - это катет в левой части трапеции с острым углом 30°
пусть y - это катет в правой части трапеции с острым углом 60°
на них приходится 15 - 7 = 8см, следовательно, x + y = 8
выясним, как связаны x и y
tg60 = h / y => y = h / tg60 = h / √3
tg30 = h / x => x = h / tg30 = 3h / √3
заметим, что x > y в 3 раза
пусть x = 3a, y = a
тогда 3a + a = 8,
a = 2
следовательно, x = 6, y = 2
теперь через тот же тангенс найдем высоту трапеции:
tg60 = h / y => h = tg60 y = 2√3.
2) по теореме Пифагора найдем диагонали трапеции
d1 = sqrt(9² + (2√3)²) = √93
d2 = sqrt(13² + (2√3)²) = √181