Площа прямої призми = площа основи*2 + периметр основи*висота.
В основі призми прямокутний трикутник. Його площа = катет1*катет2 /2. Периметр трикутника = сумма всіх сторін. В даному трикутнику відомі дві сторони. За теоремою Піфагора знайдемо гіпотенузу:
6*6+8*8 = 10*10
Гіпотенуза = 10 см
Отже, периметр = 10+6+8 = 24 см
площа = 8*6/2 = 48/2 = 24 кв.см
У прямій призмі бічні ребра перпендикулярні основі, тобто бічне ребро - висота призми.
Тепер площа пр. призми = 2*24 + 24*5 = 48+120 = 168 кв.см
Відповідь: 168 кв.см площа повної поверхні прямої призми.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Площа прямої призми = площа основи*2 + периметр основи*висота.
В основі призми прямокутний трикутник. Його площа = катет1*катет2 /2. Периметр трикутника = сумма всіх сторін. В даному трикутнику відомі дві сторони. За теоремою Піфагора знайдемо гіпотенузу:
6*6+8*8 = 10*10
Гіпотенуза = 10 см
Отже, периметр = 10+6+8 = 24 см
площа = 8*6/2 = 48/2 = 24 кв.см
У прямій призмі бічні ребра перпендикулярні основі, тобто бічне ребро - висота призми.
Тепер площа пр. призми = 2*24 + 24*5 = 48+120 = 168 кв.см
Відповідь: 168 кв.см площа повної поверхні прямої призми.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.