Треугольник АВС и треугольник А1В1С1 равны по стороне и двум прилежащим к ней углам. Отрываем треугольник АВС. Точку А совмещаем с точкой А1. Луч АС совмещаем с лучом А1С1. Но отрезок АС равен отрезку А1С1. А на данной полупрямой от её начала можно отложить только один отрезок данной линейной меры, значит, точка С совпадет с точкой С1. Но угол А равен углу А1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч АВ пойдёт по лучу А1В1. Но угол С равен углу С1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч ВС пойдёт по лучу В1С1. А две прямые пересекаются только в одной точке. Лучи АВ и ВС и лучи А1В1 и В1С1 пресекутся в одной точке. Треугольники совпали всеми своими точками. Значит они равны. Теорема доказана
Высота равнобедренной трапеции (BH), опущенная на большее основание (AD), делит его на больший отрезок (HD), который равен полусумме оснований, и меньшый (AH), который равен полуразности оснований. AH = (AD-BC)/2
Катет (AB) прямоугольного треугольника (△ABD) есть среднее геометрическое между гипотенузой (AD) и проекцией этого катета на гипотенузу (AH). AB = √(AD·AH)
AB=CD
∠ABD=90°
---
Опустим высоту BH к основанию AD.
BH ⊥ AD
Высота равнобедренной трапеции (BH), опущенная на большее основание (AD), делит его на больший отрезок (HD), который равен полусумме оснований, и меньшый (AH), который равен полуразности оснований.
AH = (AD-BC)/2
Катет (AB) прямоугольного треугольника (△ABD) есть среднее геометрическое между гипотенузой (AD) и проекцией этого катета на гипотенузу (AH).
AB = √(AD·AH)
AB = √(AD·(AD-BC)/2)
AD = 25 см
BC = 7 см
AB = √(25·(25-7)/2) = 4
P ABCD = AD+BC+2AB
P ABCD = 25+7+2·4 = 40 (см)