Для упрощения записей примем, что куб АВСDА1В1С1D1 - единичный, то есть его сторона равна 1. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными. Значит MN и A1C - скрещивающиеся прямые. Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся. Проведем прямую СР параллельно прямой MN. Угол А1СР - искомый угол. NA=√(АВ²+ВN²)=√(1+1/4)=√5/2 (по Пифагору). NM=√(NA²+AM²)=√(5/4+9/16)=√29/4 (по Пифагору). CP=NM=√29/4. CA1=√(2+1)=√3 (диагональ куба). А1Р=√(MA1²+MP²)=√(1/16+1/4)=√5/4. По теореме косинусов: Cosα=(CA1²+CP²-A1P²)/(2CA1*CP) или Cosα=(3+29/16-5/16)/(2√3*√29/4)=(72/16)/(√87\2)=9/√87. ответ: Cosα=9/√87.
Второй вариант решения - координатный метод. Пусть куб единичный, то есть сторона его "а"=1. Начало координат в точке С(0;0;0). Точка N(0;1/2;0), точка М(1;1;3/4), точка А1(1;1;1). Тогда вектор MN{-1;-1/2;-3/4}, его модуль |MN|=√(1+1/4+9/16)=√29/4. Вектор А1С{-1;-1;-1}, |A1C|=√(1+1+1)=√3. Cosα=(MN*A1C)/(|MN|*|A1C|) или Cosα=(1+1/2+3/4)/(√87/4)=9/√87. ответ: Cosα=9/√87.
Параллельные прямые АА₁ и ВВ₁ задают плоскость, которая пересекает плоскость альфа по прямой А₁В₁. Пусть С - середина АВ. Прямая, проходящая через точку С, принадлежащую плоскости (АА₁В₁), и параллельная прямой АА₁, пересечет плоскость альфа в точке С₁, лежащей на прямой А₁В₁ (на линии пересечения плоскостей). Параллельные прямые отсекают на двух прямых пропорциональные отрезки, поэтому если С - середина АВ, то и С₁ должна быть серединой А₁В₁.
Плоский четырехугольник АА₁В₁В - трапеция, СС₁ - ее средняя линия. Средняя линия трапеции равна полусумме оснований.
Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными.
Значит MN и A1C - скрещивающиеся прямые.
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Проведем прямую СР параллельно прямой MN. Угол А1СР - искомый угол.
NA=√(АВ²+ВN²)=√(1+1/4)=√5/2 (по Пифагору).
NM=√(NA²+AM²)=√(5/4+9/16)=√29/4 (по Пифагору).
CP=NM=√29/4.
CA1=√(2+1)=√3 (диагональ куба).
А1Р=√(MA1²+MP²)=√(1/16+1/4)=√5/4.
По теореме косинусов:
Cosα=(CA1²+CP²-A1P²)/(2CA1*CP) или
Cosα=(3+29/16-5/16)/(2√3*√29/4)=(72/16)/(√87\2)=9/√87.
ответ: Cosα=9/√87.
Второй вариант решения - координатный метод.
Пусть куб единичный, то есть сторона его "а"=1.
Начало координат в точке С(0;0;0).
Точка N(0;1/2;0), точка М(1;1;3/4), точка А1(1;1;1).
Тогда вектор MN{-1;-1/2;-3/4}, его модуль
|MN|=√(1+1/4+9/16)=√29/4.
Вектор А1С{-1;-1;-1}, |A1C|=√(1+1+1)=√3.
Cosα=(MN*A1C)/(|MN|*|A1C|) или
Cosα=(1+1/2+3/4)/(√87/4)=9/√87.
ответ: Cosα=9/√87.
Пусть С - середина АВ.
Прямая, проходящая через точку С, принадлежащую плоскости (АА₁В₁), и параллельная прямой АА₁, пересечет плоскость альфа в точке С₁, лежащей на прямой А₁В₁ (на линии пересечения плоскостей).
Параллельные прямые отсекают на двух прямых пропорциональные отрезки, поэтому если С - середина АВ, то и С₁ должна быть серединой А₁В₁.
Плоский четырехугольник АА₁В₁В - трапеция, СС₁ - ее средняя линия.
Средняя линия трапеции равна полусумме оснований.
СС₁ = (АА₁ + ВВ₁)/2
8 = (5 + ВВ₁)/2
ВВ₁ = 16 - 5 = 11 см