Через 3 точки A, B, C, які не лежать на одній прямій, проведено паралельні відрізки AA1, BB1,CC1 однакової довжини до того ж точки A1,B1,C1 лежать по один бік від площини ABC. Довести, що площини ABC і A1B1C1 паралельні
Центр описанной окружности лежит в точке пересечения серединных перпендикуляров, восстановленных к сторонам треугольника. Рассмотрим сторону, к которой проведена медиана. В середине этой стороны восстановим серединный перпендикуляр, на котором должен лежать центр окружности. Но медиана тоже проходит через середину этой стороны, и центр опис. окружности лежит на ней. Значит, серединный перпендикуляр и медиана совпадают, ⇒медиана перпендикулярна к этой стороне, ⇒т.е. медиана является и высотой⇒значит, треугольник равнобедренный.
Данная задача имеет два решения,
Р1=27,7см
Р2=31,3см
Объяснение:
В равнобедренном треугольнике боковые стороны равны.
Пусть боковая сторона будет 7,9
Проверяем может ли существовать такой треугольник.
7,9+7,9>11,9
11,9+7,9>7,9
Треугольник может существовать.
Р=2а+b, где а- боковая сторона треугольника
b- основание
Р1=7,9*2+11,9=15,8+11,9=27,7см.
ответ:27,7см.
2)
Пусть боковая сторона треугольника будет 11,7см.
Проверяем, может ли, существовать такой треугольник.
11,7+7,9>11,7
Да, такой треугольник может существовать
Р=2а+b.
Р2=11,7*2+7,9=23,4+7,9=31,3см.
ответ: 31,3см