В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ladyhyuna
ladyhyuna
18.04.2023 18:43 •  Геометрия

Через две образующих конуса, угол между которыми равен α, проведена плоскость, пересекающая основание конуса по хорде, которую видно из центра основания под углом β. Радиус основания конуса равен R. Найдите: 1) площадь сечения; 2) длину образующей конуса.

Показать ответ
Ответ:
wereweek777
wereweek777
14.02.2022 21:07

\boxed{AB = AC = \dfrac{R \cdot \sin (0,5\beta)}{\sin (0,5\alpha )}}

\boxed{S_{зCAB} = \dfrac{0,5 \cdot R^{2} \cdot \sin^{2} (0,5\beta) \cdot\sin \alpha }{\sin^{2} (0,5\alpha )}}

Объяснение:

Дано: OC = OB = R, ∠BOC = β, ∠BAC = α, O - центр окружности в основании конуса

Найти: AC,BC, S_{зCAB} - ?

Решение: Пусть точка M - середина отрезка CB. Рассмотрим треугольник ΔCOB. Треугольник ΔCOB - равнобедренный, так как по условию OC = OB = R. Проведем отрезок OM. Так как по построению CM = MB, то по определению MO - медиана равнобедренного треугольника ΔCOB. Так как CB - основание треугольника ΔCOB

(по условию OC = OB = R), то по теореме медиана проведенная к основания равнобедренного треугольника является биссектрисой и высотой, тогда ∠COM = ∠BOM = ∠BOC : 2 = β : 2 = 0,5β. Так как OM - высота, то треугольник ΔMOB - прямоугольный. Рассмотрим треугольник ΔMOB. \sin \angle MOB = \dfrac{MB}{OB} \Longrightarrow MB = OB \cdot \sin \angle MOB = R \cdot \sin (0,5\beta ).

Рассмотрим треугольник ΔCAB. Треугольник ΔCAB - равнобедренный, так как по условию AC = AB как образующие конуса. Проведем отрезок AM. Так как по построению CM = MB, то по определению MA - медиана равнобедренного треугольника ΔCAB. Так как CB - основание треугольника ΔCAB (AC = AB как образующие конуса), то по теореме медиана проведенная к основания равнобедренного треугольника является биссектрисой и высотой, тогда

∠CAM = ∠BAM = ∠BAC : 2 = α : 2 = 0,5α. Так как AM - высота, то треугольник ΔMAB - прямоугольный. Рассмотрим треугольник ΔMAB.

\sin \angle MAB = \dfrac{MB}{AB} \Longrightarrow AB = \dfrac{MB}{\sin \angle MAB} = \dfrac{R \cdot \sin (0,5\beta)}{\sin (0,5\alpha )}.

Так как AC = AB как образующие, то AC = \dfrac{R \cdot \sin (0,5\beta)}{\sin (0,5\alpha )}.

По формуле площади для треугольника ΔBAC:

S_{зCAB} = 0,5 \cdot AC \cdot AB \cdot \sin \angle BAC = \dfrac{0,5 \cdot R^{2} \cdot \sin^{2} (0,5\beta) \cdot\sin \alpha }{\sin^{2} (0,5\alpha )}.


Через две образующих конуса, угол между которыми равен α, проведена плоскость, пересекающая основани
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота