Через гипотенузу АВ прямоугольного треугольника ABC проведена плоскость а. Найдите угол наклона катета ВС к плоскости а, если АС = 24 дм, АВ = 26 дм, а точка С удалена от плоскости а на 5 дм.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
1) АВ - наклонная к плоскости α, АС ⊥α, ⇒ ВС - проекция наклонной на плоскость. ∠АВС - искомый. В ΔАВС катет ВС в 2 раза меньше гипотенузы, значит ∠ВАС = 30°, тогда ∠АВС = 60° 2) АВ и АС- наклонные к плоскости, АО ⊥ α, ⇒ ВО и СО - проекции наклонных. ∠АВО = ∠АСО = 60° (углы между наклонными и плоскостью) ΔАВО = ΔАСО по общему катету АО и противолежащему острому углу, значит ВО = СО и АВ = АС. ∠ВОС = 90°, пусть ВО = СО = х. По теореме Пифагора: х² + х² = (12√2)² 2х² = 288 х² = 144 х = 12 см. ΔАВО: ∠АОВ = 90°, cos∠B = BO/AB cos 60° = 12 / AB AB = 24 см
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
АВ - наклонная к плоскости α, АС ⊥α, ⇒ ВС - проекция наклонной на плоскость.
∠АВС - искомый.
В ΔАВС катет ВС в 2 раза меньше гипотенузы, значит ∠ВАС = 30°, тогда ∠АВС = 60°
2)
АВ и АС- наклонные к плоскости, АО ⊥ α, ⇒ ВО и СО - проекции наклонных. ∠АВО = ∠АСО = 60° (углы между наклонными и плоскостью)
ΔАВО = ΔАСО по общему катету АО и противолежащему острому углу, значит ВО = СО и АВ = АС.
∠ВОС = 90°, пусть ВО = СО = х. По теореме Пифагора:
х² + х² = (12√2)²
2х² = 288
х² = 144
х = 12 см.
ΔАВО: ∠АОВ = 90°, cos∠B = BO/AB
cos 60° = 12 / AB
AB = 24 см