Через кінці відрізка AB і його середи ну O проведено паралельні прямі, які перетинають площину α в точках A1, B1, O1. Знайдіть довжину відрізка OO1, якщо AA1 = 11 м, BB1 = 33 м і відрізок AB не перетинає площину α.
Проведите биссектрису угла α и биссектрису угла при вершине равнобедренного Δ.Рассмотрите прямоугольный Δ, который образовался пересечением биссектрис. Его острый угол α/2, а противолежащий катет r, прилежащий катет -- половина основания. rctgα/2 -- половина основания. 2rctgα/2 -- всё основание. Рассмотрите Δпрямоугольный, у которого катеты половина основания и биссектриса, проведённая к основанию, а гипотенуза -- боковая сторона. По соотношению между сторонами и углами в прямоугольном треугольнике (2rctgα/2)/cosα -- боковая сторона R=(rctgα/2)/(cosαsinα)
1)получим треугольник со сторонами 4 и 5, и углом 180-52=128 используйте теорему косинусов (квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.) a^2 = b^2 + c^2 - 2bc*cos(a) 2)вначале по теореме косинусов: cos87=0,05 sin87=0,9 bc^2=ab^2+ac^2-2ab*ac*cosa bs^2=45^2+32^2-2*45*32*0,05 bc^2=2905 bc=54(примерно) по теореме синусов: ab/sinc=bc/sin87 45/sinc=54/0,9 sinc=0,75 уголc=41(примерно) уголb=180-87-41=52
2rctgα/2 -- всё основание. Рассмотрите Δпрямоугольный, у которого катеты половина основания и биссектриса, проведённая к основанию, а гипотенуза -- боковая сторона. По соотношению между сторонами и углами в прямоугольном треугольнике (2rctgα/2)/cosα -- боковая сторона
R=(rctgα/2)/(cosαsinα)