Через кінці відрізка АВ і його середину М проведено паралельні прямі,які перетинають дану площину в точках А1, В1, М1. Знайдіть довжину Мм1,якщо АВ не перетинає площину, Аа1 =3,6дм, Вв1 =4,8дм.
Очень нечетко сформулированное условие. При пересечении трех прямых образуется 3 пары равных между собой вертикальных углов. Так как угол КАМ равен 90°, то значит прямые КL и MN взаимно перпендикулярны. Поэтому ∠KAN=∠LAN=∠MAL=∠KAM=90°. Условие "угол КАР: MAQ=4 : 5" дано для того, чтобы знать, как провести прямую PQ. ( cм. рис. 1) Если PQ проведена так как на рисунке 1, обозначим
∠KAP=4x; ∠MAQ=5x, тогда ∠KAQ=4x-90°;∠MAP=5x-90°; ∠KAQ+∠KAM+∠MAP=180°; 4x-90°+90°+5x-90°=180°. 9x=270° x=30° ∠KAP=4·30°=120°; ∠MAQ=5·30°=150°; значит ∠МАР=∠QAN=30°; ∠PАL=∠QAK=60° и ∠PАL:∠LАN=60°:90°=2:3 Условие "один из углов 80°" не выполняется.
Если прямая PQ расположена так как на рисунке 2. Аналогично случаю 1 обозначим ∠KAP=4x; ∠MAQ=5x, получаем невозможное∠KAP=4·30°=120°, а на рисунке угол ∠KAP- острый . Требуется дополнительное условие. Оно есть "один из углов 80°". Какой? Если ∠KAP=80°, тогда ∠MAQ=100° а на рисунке 2, угол ∠MAQ=180°-10°=170°.
Значит, нужен третий рисунок.
∠MAQ=80°,∠MAQ=5x. х=16° ∠KAP=4x=4·16°=64° Но тогда не выполняется условие "два других относятся как 2:3".
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
При пересечении трех прямых образуется 3 пары равных между собой вертикальных углов.
Так как угол КАМ равен 90°, то значит прямые КL и MN взаимно перпендикулярны.
Поэтому ∠KAN=∠LAN=∠MAL=∠KAM=90°.
Условие "угол КАР: MAQ=4 : 5" дано для того, чтобы знать, как провести прямую PQ. ( cм. рис. 1)
Если PQ проведена так как на рисунке 1, обозначим
∠KAP=4x; ∠MAQ=5x, тогда
∠KAQ=4x-90°;∠MAP=5x-90°;
∠KAQ+∠KAM+∠MAP=180°;
4x-90°+90°+5x-90°=180°.
9x=270°
x=30°
∠KAP=4·30°=120°; ∠MAQ=5·30°=150°;
значит ∠МАР=∠QAN=30°;
∠PАL=∠QAK=60° и
∠PАL:∠LАN=60°:90°=2:3
Условие "один из углов 80°" не выполняется.
Если прямая PQ расположена так как на рисунке 2.
Аналогично случаю 1 обозначим
∠KAP=4x; ∠MAQ=5x, получаем невозможное∠KAP=4·30°=120°, а на рисунке угол ∠KAP- острый .
Требуется дополнительное условие.
Оно есть "один из углов 80°". Какой?
Если ∠KAP=80°, тогда ∠MAQ=100°
а на рисунке 2, угол ∠MAQ=180°-10°=170°.
Значит, нужен третий рисунок.
∠MAQ=80°,∠MAQ=5x. х=16°
∠KAP=4x=4·16°=64°
Но тогда не выполняется условие "два других относятся как 2:3".
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.