Через концы трёх рёбер куба, исходящих из одной вершины, проведена плоскость. Постройте линии пересечения этой плоскости с гранями куба. Найдите периметр и пло площадь фигуры, обравованной полученными линиями, если ребро куба равно 1.
1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Определение: "Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление". Вектор может перемещаться ПАРАЛЛЕЛЬНО СЕБЕ в любое место в пространстве.
Определение: "Два вектора a и b образуют УГОЛ.
Угол между векторами может принимать значения от 0° до 180° включительно.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Для решения задачи по определению угла между векторами их надо объединить НАЧАЛАМИ.
В правильном шестиугольнике внутренние углы равны 120°.
Прямые, соединяющие центр с вершинами, делят эти углы пополам.
Диагонали, проходящие через центр, делят правильный шестиугольник на 6 правильных треугольников и 6 ромбов.
Исходя из этого:
∠ОАВ = 60°, ∠FАВ = 120°, ∠DEF = 120°, ∠OHC = 90°.
Тогда, соединив НАЧАЛА данных нам векторов, получим ответ:
а) 60°, б) 120°, в) 120° и г) 90°.
7. Формула скалярного произведения векторов:
a·b=|a|·|b|·сosα, где а и b - вектора, α - угол между ними.
Тогда, принимая во внимание, что модули векторов АВ, ВС, CD и EF равны 1 и учитывая, что Cos60=1/2, Cos120= -1/2, Cos90=0 (найденные углы в п.6, имеем):
а) 1/2, б) -1/2, в) -1/2, г) 0.
P.S. Для п. г) модули векторов АС и ВЕ не имеют значения, так как умножение на 0 равно 0, но их легко найти при необходимости:
|AC| = √3 (по Пифагору), а |BE| = 2 (по свойству правильного шестиугольника).
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
6. а) 60°, б) 120°, в) 120° и г) 90°.
7. а) 1/2, б) -1/2, в) -1/2, г) 0.
Объяснение:
Определение: "Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление". Вектор может перемещаться ПАРАЛЛЕЛЬНО СЕБЕ в любое место в пространстве.
Определение: "Два вектора a и b образуют УГОЛ.
Угол между векторами может принимать значения от 0° до 180° включительно.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Для решения задачи по определению угла между векторами их надо объединить НАЧАЛАМИ.
В правильном шестиугольнике внутренние углы равны 120°.
Прямые, соединяющие центр с вершинами, делят эти углы пополам.
Диагонали, проходящие через центр, делят правильный шестиугольник на 6 правильных треугольников и 6 ромбов.
Исходя из этого:
∠ОАВ = 60°, ∠FАВ = 120°, ∠DEF = 120°, ∠OHC = 90°.
Тогда, соединив НАЧАЛА данных нам векторов, получим ответ:
а) 60°, б) 120°, в) 120° и г) 90°.
7. Формула скалярного произведения векторов:
a·b=|a|·|b|·сosα, где а и b - вектора, α - угол между ними.
Тогда, принимая во внимание, что модули векторов АВ, ВС, CD и EF равны 1 и учитывая, что Cos60=1/2, Cos120= -1/2, Cos90=0 (найденные углы в п.6, имеем):
а) 1/2, б) -1/2, в) -1/2, г) 0.
P.S. Для п. г) модули векторов АС и ВЕ не имеют значения, так как умножение на 0 равно 0, но их легко найти при необходимости:
|AC| = √3 (по Пифагору), а |BE| = 2 (по свойству правильного шестиугольника).