Через конец а отрезка AB проведена плоскость через конец В и точку С этого отрезка проведены параллельные прямые пересекающие плоскость в точках B1 и C1 Найдите длину отрезка СС1, если ВС:СА=2:5. ВВ1= 4,9 см
1). Призма называется прямой, если боковые грани призмы перпендикулярны основаниям. В основании прямой (и обычной) призмы могут лежать любые равные многоугольники, лежащие в параллельных плоскостях, в том числе и трапеция.
2). Так как прямоугольный параллелепипед является частным случаем прямой четырехугольной призмы, то, в качестве примера, можно назвать любые объекты такой формы: микроволновая печь, шкаф, жилой многоквартирный дом, колонка, тумбочка и т.п.
Из "экзотических" примеров можно назвать, например, рельс, имеющий в основании многоугольник в форме буквы н
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
1). Призма называется прямой, если боковые грани призмы перпендикулярны основаниям. В основании прямой (и обычной) призмы могут лежать любые равные многоугольники, лежащие в параллельных плоскостях, в том числе и трапеция.
2). Так как прямоугольный параллелепипед является частным случаем прямой четырехугольной призмы, то, в качестве примера, можно назвать любые объекты такой формы: микроволновая печь, шкаф, жилой многоквартирный дом, колонка, тумбочка и т.п.
Из "экзотических" примеров можно назвать, например, рельс, имеющий в основании многоугольник в форме буквы н
Обозначим середину стороны DС буквой K. Координаты точки K ищем по формуле деления отрезка пополам
\begin{lgathered}x_K=\dfrac{x_D+x_C}{2}=\dfrac{8+(-4)}{2}=2\\ y_K=\dfrac{y_D+y_C}{2}=\dfrac{-2+(-2)}{2}=-2\end{lgathered}
x
K
=
2
x
D
+x
C
=
2
8+(−4)
=2
y
K
=
2
y
D
+y
C
=
2
−2+(−2)
=−2
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
\begin{lgathered}\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}\\ \\ \\ \dfrac{x-(-2)}{2-(-2)}=\dfrac{y-6}{-2-6}~~~\Rightarrow~~~\dfrac{x+2}{4}=\dfrac{y-6}{-8}~~~\Rightarrow~~~ \boxed{y+2x-2=0}\end{lgathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
2−(−2)
x−(−2)
=
−2−6
y−6
⇒
4
x+2
=
−8
y−6
⇒
y+2x−2=0
ответ: y + 2x - 2 = 0.