Через конец А отрезка АВ проведена плоскость. Через конец В и точку С этого отрезка проведены параллельные прямые, пересекающие плоскость в точках В1 и С1 Найдите длину отрезка СС1, если:1) АС = 9,2 дм, АВ: ВВ1= 5:3 Можно без рисунка Главное решение
Такой треугольник будет или тупоугольный (один угол тупой и два угла острых), тогда 2 высоты, проведенные из вершин острых углов, будут лежать вне площади треугольника. Или прямоугольный (один угол прямой и 2 угла острых), тогда 2 высоты, проведенные из вершин острых углов совпадут с катетами прямоугольного треугольника.
№2 (посмотри 2ое фото)
С – вершина угла ОСD, СО перпендикулярно OD, следовательно СО – высота, проведенная из вершины угла OCD. Так же СО – является стороной треугольника ОСD, значит высота СО совпадает со стороной треугольника.
D – вершина угла ОDС, DО перпендикулярно OC, следовательно DО – высота, проведенная из вершины угла ODC. Так же DO – является стороной треугольника ОСD, значит высота DО совпадает со стороной треугольника.
ответ: катеты ОС и OD.
№3 (3е фото)
Если треугольник прямоугольный, то на 2 прямоугольных треугольника. Высота АС и ВС не делят данных треугольник на другие треугольники, так как являются сторонами треугольника, а высота СК делит данный треугольник на 2 прямоугольных треугольника (угол образованный высотой равен 90°).
Если треугольник тупоугольный, то высоты будут делить его на два прямоугольных треугольника. Высоты ВМ и АН не будут делить начальный треугольник, так как лежат вне его, а высота ОК делит данный треугольник на 2 прямоугольных треугольника (угол образованный высотой равен 90°).
Если треугольник остроугольный, то высоты разделят его на 6 прямоугольных треугольников. Каждая высота будет делить треугольник на 2 треугольника, в итоге получим 2*3=6 прямоугольных треугольников (углы образованные высотой равны 90°)
Объяснение:
№1 (оба чертежа на 1ом фото)
Такой треугольник будет или тупоугольный (один угол тупой и два угла острых), тогда 2 высоты, проведенные из вершин острых углов, будут лежать вне площади треугольника. Или прямоугольный (один угол прямой и 2 угла острых), тогда 2 высоты, проведенные из вершин острых углов совпадут с катетами прямоугольного треугольника.
№2 (посмотри 2ое фото)
С – вершина угла ОСD, СО перпендикулярно OD, следовательно СО – высота, проведенная из вершины угла OCD. Так же СО – является стороной треугольника ОСD, значит высота СО совпадает со стороной треугольника.
D – вершина угла ОDС, DО перпендикулярно OC, следовательно DО – высота, проведенная из вершины угла ODC. Так же DO – является стороной треугольника ОСD, значит высота DО совпадает со стороной треугольника.
ответ: катеты ОС и OD.
№3 (3е фото)
Если треугольник прямоугольный, то на 2 прямоугольных треугольника. Высота АС и ВС не делят данных треугольник на другие треугольники, так как являются сторонами треугольника, а высота СК делит данный треугольник на 2 прямоугольных треугольника (угол образованный высотой равен 90°).
Если треугольник тупоугольный, то высоты будут делить его на два прямоугольных треугольника. Высоты ВМ и АН не будут делить начальный треугольник, так как лежат вне его, а высота ОК делит данный треугольник на 2 прямоугольных треугольника (угол образованный высотой равен 90°).
Если треугольник остроугольный, то высоты разделят его на 6 прямоугольных треугольников. Каждая высота будет делить треугольник на 2 треугольника, в итоге получим 2*3=6 прямоугольных треугольников (углы образованные высотой равны 90°)
Объяснение:
1. у него равны 2 стороны(по рисунку) и треугольник; т.к. АОС и ДОС-вертикальные(равен по 2 сторонам и углу)
2.МОN=РОQ(вертикальные)
1=2(по рисунку), и рааная сторона(значит он равен по 2 углам и протеволежащей стороне)
3. одна сторона общая(по римунку), 1=2, 3=4.(равны по 2 углам и протеволежащей стороне)
4. одна сторона общая(по рисунку), 2 равные стороны, и также по рисунку видно, что 1 и 2 равны(по 2 сторонам и углу)
5. две стороны равны, и одна общая(равны по 3 сторонам)
6. 2 стороны равны и 1 общая(по рисунку), значит он равен по 3 сторонам
надеюсь нормально. названия я писать не стала, думаю Вы увидите на рисунке