Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
22^2-2*22*CM*cosAMC=10^2-2*1010*CM*cosBMC
484-44*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
484-44*CM*cos120=100-20*CM*cos60
484-44*CM*(-1/2)=100-20*CM*1/2
484+22*CM=100-10*CM
32*CM=-384
СМ=нет (отрицательное)
α =β =1 ⇒4x +1 =0 ⇔ x = -1/4 .
α = - β =1⇒2y - 3/2 =0 ⇔ y = 3 /2 .
* * * x = -1/4 и y = 3/2 * * *
M₀( -1/4 ; 3 /2) центр пучка прямых
y -y₀ =k(x -x₀) ⇔y -3/2 =k*(x +1/4) .
Любые две прямые : 1) y - 3/2 =k*(x +1/4) и 2) y - 3/2 = (- 1/k)*(x +1/4) .
можно задавать например:
a) k = -2 ⇒ 2x+y -1 =0 и 4x -8y +13 =0 .
b) k = 2 ⇒ 2x -y +2 0 и 4x +8y -11= 0
2. Найдите каноническое уравнение прямой : {x+y -2 = 0 ;y - z +1 =0 .
(x - x₁) / (x₂-x₁) = (y - y₁) / (y₂-y₁) = (z - z₁) / (z₂ - z₁) ;
Выбираем две точки : M₁(1; 1; 2 ) , M₂(2; 0; 1 )
(x - 1) / (2 -1) = (y - 1) / (0 -1) = (z - 2) / (1 - 2) ⇔
(x - 1) / 1 = (y - 1) / (-1) = (z - 2) / ( -1) .
Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
22^2-2*22*CM*cosAMC=10^2-2*1010*CM*cosBMC
484-44*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
484-44*CM*cos120=100-20*CM*cos60
484-44*CM*(-1/2)=100-20*CM*1/2
484+22*CM=100-10*CM
32*CM=-384
СМ=нет (отрицательное)