Через середину діагоналі АС паралелограма АВСД проведено пряму, яка перетинає сторони BC i АД. Ця пряма перетинає прямі АВ і СД у точках М і К відповідно. Визначте вид чотирикутника АМСК.с рисунком !
1.P=2(a+b), пусть а=х, тогда 30=2х+8х 30=10х х=3, первая сторона 4*3=12м, вторая сторона ответ: 3см, 3см, 12см, 12см 3.Биссектриса угла А отсекает от прямоугольника равнобедренный треугольник АВЕ. Значит АВ=ВЕ=7см, ВС=7+3=10см. Периметр равен 2*(7+10)=34см. ответ: периметр = 34см 4.Меньшая диагональ АС=24см Угол А=60° Меньшая диагональ делит ромб на 2 треугольника: АВС и АСD Так как угол А= углу D= 60° , то треугольники равносторонние и сторона ромба =24 см 5.Периметр= 4а а=46:4=11,5см Площадь= а^2=11,5×11,5=132,25см^2
30=2х+8х
30=10х
х=3, первая сторона
4*3=12м, вторая сторона
ответ: 3см, 3см, 12см, 12см
3.Биссектриса угла А отсекает от прямоугольника равнобедренный треугольник АВЕ. Значит АВ=ВЕ=7см, ВС=7+3=10см. Периметр равен 2*(7+10)=34см.
ответ: периметр = 34см
4.Меньшая диагональ АС=24см
Угол А=60°
Меньшая диагональ делит ромб на 2 треугольника: АВС и АСD
Так как угол А= углу D= 60° , то треугольники равносторонние и сторона ромба =24 см
5.Периметр= 4а
а=46:4=11,5см
Площадь= а^2=11,5×11,5=132,25см^2
точку пересечения отрезков обозначим за О.
1)Рассмотрим треугольники ВОС и AOD, они равны, т.к. ВО=OD, ОА=ОС, а угол ВОС=углу AOD, как вертикальные при пересекающихся прямых.
Из этого следует, что ВС=AD, как соответственные элементы равных треугольников.
2)Рассмотрим треугольники ВОА и COD, они равны, т.к. ВО=OD, АО=ОС, а угол ВОА=углуCOD, как вертикальные при пересекающихся прямых.
Из этого следует, что АВ=CD
3)Рассмотрим треугольники АВС и ADC, они равныпо трем сторонам ( АС-общая, AB=CD, AD=BC из доказательств)