Довольно простая задача: нам даны три линии - а, б, и с, также отрезки на линиях б и с. Назовём отрезок на линии б отрезком АБ, а отрезок на линии с - АС
(Советую начертить это на бумажке и отметить следующие точки: место пересечения прямых а и с - точка С, место персечения прямых б и с - точка А, место пересечения какой-то прямой с прямой б - точка Б, а также отметь где-нибудь СПРАВА от точки пересечения прямых с и а точку Д)
Итак. Отрезки АБ и АС равны друг другу, следовательно АБС - равнобедренный треугольник. Как мы знаем, в таком треугольничке углы при основании равны, т.е. угол АСБ равен углу АБС. Также давай возьмём какую-нибудь точку на прямой а (справа от места пересечения прямых а и с) и назовём её Д. Получается, что угол БСД равен углу АСБ по условию, а следовательно угол БСД равен также и углу АБС (т.к., АСБ = АБС). Углы АБС и БСД - накрест лежащие при секущей с и они равны, следовательно прямые а и б параллельны, ч.т.д.
АВ и СЮД параллельны друг другу, т.к. между ними проходит секущая ВС, накрест лежащие углы при которой равны. Точка О делит ВС на ВО и ОС, равные друг другу (по усл.). Углы ВОА и СОД равны друг другу как вертикальные => треугольники равны по двум равным углам и равной стороне между ними
Следующая задача:
АД - биссектриса угла А, следовательно углы ВАД и САД равны. Нам уже дано, что углы 1 и 2 при угле Д равны. Сторона АД - общая, => вновь по 2 равным углам и общем стороне мы получаем, что эти треугольники равны, ч.т.д.
Прямые а и б параллельны друг другу
Объяснение:
Довольно простая задача: нам даны три линии - а, б, и с, также отрезки на линиях б и с. Назовём отрезок на линии б отрезком АБ, а отрезок на линии с - АС
(Советую начертить это на бумажке и отметить следующие точки: место пересечения прямых а и с - точка С, место персечения прямых б и с - точка А, место пересечения какой-то прямой с прямой б - точка Б, а также отметь где-нибудь СПРАВА от точки пересечения прямых с и а точку Д)
Итак. Отрезки АБ и АС равны друг другу, следовательно АБС - равнобедренный треугольник. Как мы знаем, в таком треугольничке углы при основании равны, т.е. угол АСБ равен углу АБС. Также давай возьмём какую-нибудь точку на прямой а (справа от места пересечения прямых а и с) и назовём её Д. Получается, что угол БСД равен углу АСБ по условию, а следовательно угол БСД равен также и углу АБС (т.к., АСБ = АБС). Углы АБС и БСД - накрест лежащие при секущей с и они равны, следовательно прямые а и б параллельны, ч.т.д.
ВАО и СДО
Объяснение:
АВ и СЮД параллельны друг другу, т.к. между ними проходит секущая ВС, накрест лежащие углы при которой равны. Точка О делит ВС на ВО и ОС, равные друг другу (по усл.). Углы ВОА и СОД равны друг другу как вертикальные => треугольники равны по двум равным углам и равной стороне между ними
Следующая задача:
АД - биссектриса угла А, следовательно углы ВАД и САД равны. Нам уже дано, что углы 1 и 2 при угле Д равны. Сторона АД - общая, => вновь по 2 равным углам и общем стороне мы получаем, что эти треугольники равны, ч.т.д.