Через сторону АВ прямоугольника ABCD со сторонами 4 см и 8 см проведена плоскость γ. Проекция прямоугольника на плоскость у – квадрат. Найдите: а) расстояние от вершины С до плоскости γ;
б) угол φ, который диагональ прямоугольника образует с плоскостью γ.
ответ:а) 4 корень 3
б)tg=корень 2/4
Мне нужен чертёж и решение
АС/6=ВС/11 или АС/ВС=6/11.
Угол между касательной СД и хордой АС, проведенной в точку касания С, равен половине дуги, стягиваемой этой хордой: <АСД= дуга АС/2.
Вписанный угол АВС опирается тоже на дугу АС и равен <АВС= дуга АС/2.
Значит <АВС=<АСД.
У ΔАСД и ΔСВД два угла равны: <АВС=<АСД и <СДВ=<СДА (они совпадают), значит эти треугольники подобны по 1 признаку.
АС/ВС=СД/ВД=АД/СД
СД/ВД=6/11, ВД=11СД/6
АД/СД=6/11, АД=6СД/11
ВД=АД+АВ=АД+6+11=АД+17
11СД/6=6СД/11+17
121СД=36СД+1122
СД=1122/85=13.2
ответ: 13.2
По условию СК/КВ=5/8, значит СК=5х, КВ=8х, ВС=СК+КВ=13х
По свойству касательных, проведенных из одной точки к окружности СК=СН=5х, тогда АС=2*5х=10х
Из прямоугольного ΔВНС найдем ВН=√(ВС²-СН²)=√(13х)²-(5х)²=√144х²=12х
Площадь Sавс=ВН*АС/2
540=12х*10х/2
х=√9=3
СК=5*3=15
КВ=8*3=24
АВ=ВС=13*3=39
АС=10*3=30
Полупериметр р=(2АВ+АС)/2=(2*39+30)2=54
Радиус ОК=Sавс/p=540/54=10
Из прямоугольного ΔВОК найдем ВО:
ВО=√(КВ²+ОК²)=√24²+10²=√676=26