В правильном восьмиугольнике противолежащие стороны параллельны. М₂М₃ ll М₆М₇, значит М₃М₆⊥М₆М₇, значит тр-ник М₃М₆М₇ прямоугольный. Аналогично тр-ник М₃М₇М₈ прямоугольный. Эти треугольники равны по равным катетам М₆М₇ и М₇М₈ и общей гипотенузе М₃М₇, значит S(М₃М₆М₇)=S(М₃М₆М₇М₈)/2=√2/2. В тр-ке М₃М₆М₇ М₆О - медиана (О - точка пересечения больших диагоналей восьмиугольника, его центр), значит S(М₆ОМ₇)=S(М₃М₆М₇)/2=√2/4. Площадь восьмиугольника: S₈=8·S(М₆ОМ₇)=8·√2/4=2√2 - это ответ.
Так как расстояние от точки А до оси абсцисс (оно равно 3) меньше радиуса 5, то точек на оси абсцисс, расстояние от которых до точки А равно 5, будет 2. Они находятся как точки пересечения окружности радиусом 5 с центром в точке А. Уравнение такой окружности (х-1)²+(у-3)²=5². На оси Ох у = 0. Тогда (х-1)²+(0-3)²=5². х²-2х+1+9 = 25. Получили квадратное уравнение х²-2х-15 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5; x₂=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3. Имеем 2 центра: (-3; 0) и (5; 0)
ответ: имеем 2 уравнения окружности, проходящей через точку A(1; 3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5: (х+3)² + у² = 5², (х-5)²+ у² = 5².
В правильном восьмиугольнике противолежащие стороны параллельны.
М₂М₃ ll М₆М₇, значит М₃М₆⊥М₆М₇, значит тр-ник М₃М₆М₇ прямоугольный.
Аналогично тр-ник М₃М₇М₈ прямоугольный. Эти треугольники равны по равным катетам М₆М₇ и М₇М₈ и общей гипотенузе М₃М₇, значит S(М₃М₆М₇)=S(М₃М₆М₇М₈)/2=√2/2.
В тр-ке М₃М₆М₇ М₆О - медиана (О - точка пересечения больших диагоналей восьмиугольника, его центр), значит S(М₆ОМ₇)=S(М₃М₆М₇)/2=√2/4.
Площадь восьмиугольника: S₈=8·S(М₆ОМ₇)=8·√2/4=2√2 - это ответ.
Уравнение такой окружности (х-1)²+(у-3)²=5². На оси Ох у = 0.
Тогда (х-1)²+(0-3)²=5². х²-2х+1+9 = 25.
Получили квадратное уравнение х²-2х-15 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5; x₂=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3.
Имеем 2 центра: (-3; 0) и (5; 0)
ответ: имеем 2 уравнения окружности, проходящей через точку A(1; 3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5:
(х+3)² + у² = 5²,
(х-5)²+ у² = 5².