Через точки В1 і В2, сторони АВ рівностороннього трикутника АВС проведено площини аi р, які паралельні прямій BC. . Обчисліть периметри фігур, на Які розбивають цей трикутник дані Площини, якщо AB1= B1B2= B2B та AC=18см.
Самое простое доказательство этой теоремы через радиус описанной окружности.
Около прямоугольного треугольника АВС (угол С = 90 градусов) опишем окружность (вершины треугольника АВС лежат на окружности, все углы треугольника - вписанные углы). Центр О этой окружности лежит в середине гипотенузы АВ, так как вписанный угол равен половине градусной меры дуги, на которую опирается, а прямой угол опирается на половину окружности, концы которой соединяет диаметр АВ.
Отрезок СО яляется медианой и радиусом описанной около треугольника АВС окружности.
Итак, АО = ВО = СО, как радиусы. Теорема доказана.
Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя — основанием. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
Около прямоугольного треугольника АВС (угол С = 90 градусов) опишем окружность (вершины треугольника АВС лежат на окружности, все углы треугольника - вписанные углы). Центр О этой окружности лежит в середине гипотенузы АВ, так как вписанный угол равен половине градусной меры дуги, на которую опирается, а прямой угол опирается на половину окружности, концы которой соединяет диаметр АВ.
Отрезок СО яляется медианой и радиусом описанной около треугольника АВС окружности.
Итак, АО = ВО = СО, как радиусы. Теорема доказана.
Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.