Через точку A кола з центром O проведено хорду AB і діаметр AC. Знайдітькут BAC, якщо кут BOC дорівнює 80°(у відповідь записати тільки число без одиниць вимірювання) * очь
1) ∠СОА треугольника АСО = ∠ВОD треугольника ОDВ - так как эти углы являются вертикальными (образованы пересечением двух прямых и лежат друг напротив друга).
2) ∠АСО треугольника АСО = ∠ВDО треугольника ОDВ = 90° - согласно условию задачи (АС⊥ α и DB⊥α).
3) Сторона СО треугольника АСО = стороне ОD треугольника ОDВ
Если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Следовательно, ΔАСО = ΔОDB.
4) В равных треугольниках против равных углов лежат равные стороны.
Сторона АС треугольника АСО и сторона DB треугольника ОDВ лежат против равных углов (∠СОА = ∠ВОD) - значит, АС = DB.
ВЫВОД: так как АС - это кратчайшее расстояние от точки А до прямой α (перпендикуляр является кратчайшим расстоянием) и DB - это также кратчайшее расстояние от точки B до прямой α, то это означает, что точки А и В находятся на одинаковом расстоянии от прямой α.
25.
тр. BCF и тр. BDC
общая сторона BC, 2 равных угла. равны по 2 признаку равенства.
тр. ABE и тр. BCD. 2 равных стороны, равные углы между ними. равны по 1 признаку равенства.
тр. ABE и тр. FBC равны, тк предыдущие треугольники тоже равные.
26.
тр AMB и тр. DNC равны по 3м сторонам. По 3 признаку.
тр. ADM и BNC равны по 3м сторонам, 3 признак.
27.
тр. EDO и тр COF по двум сторонам и углу между ними, 1 признак равенства.
тр. AEO и тр FOB равны по 2м прилежащим углам и стороне. 2 признак
тр. AOD и COB равны, тк предыдущение тр. тоже равны.
28.
тр DEC и тр AFB равны по трем сторонам, 3 признак.
тр FCB и тр. DEA равны по трем сторонам, 3 признак.
29.
тр ADF и тр BEC равны по 2м сторонам и углу между ними. углы равны, тк накрестлежащие. 1 признак
боковые равны по трем сторонам, 3 признак.
31. боковые треугольники равны по 2м сторонам и углу между ними. 1 признак равенства.
32. тр DEO и тр COF равны по 2м сторонам и углу между ними, 1 признак.
боковые равны по 2м сторонам и углу между ними, 1 признак.
См. Объяснение.
Объяснение:
Доказательство.
1) ∠СОА треугольника АСО = ∠ВОD треугольника ОDВ - так как эти углы являются вертикальными (образованы пересечением двух прямых и лежат друг напротив друга).
2) ∠АСО треугольника АСО = ∠ВDО треугольника ОDВ = 90° - согласно условию задачи (АС⊥ α и DB⊥α).
3) Сторона СО треугольника АСО = стороне ОD треугольника ОDВ
Если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Следовательно, ΔАСО = ΔОDB.
4) В равных треугольниках против равных углов лежат равные стороны.
Сторона АС треугольника АСО и сторона DB треугольника ОDВ лежат против равных углов (∠СОА = ∠ВОD) - значит, АС = DB.
ВЫВОД: так как АС - это кратчайшее расстояние от точки А до прямой α (перпендикуляр является кратчайшим расстоянием) и DB - это также кратчайшее расстояние от точки B до прямой α, то это означает, что точки А и В находятся на одинаковом расстоянии от прямой α.