В треугольник со стороной 10 см и высотой 7 см, проведенной к этой стороне, вписан прямоугольник, стороны которого относятся как 4:7, причем меньшая сторона прямоугольника лежит на данной стороне треугольника. Найти стороны прямоугольника. --------- Сделаем рисунок треугольника АВС и вписанного прямоугольника ТМКО Треугольники МВК и АВС подобны - МК||АС, углы при основаниях равны по свойству параллельных прямых и секущей, и угол В - общий. Пусть коэффициент отношения сторон прямоугольника будет х. Тогда ТО=МК=4х, МТ=КО=7х Высота ВЕ ∆ МВК=ВН-ЕН=7-7х Из подобия треугольников следует отношение их высот и оснований: ВН:ВЕ=АС:МК 7:(7-7х)=10:4х 28х=70-70х 98х=70 х=70:98=5/7 см ⇒ МК=ТО=4*5/7=20/7=2 4/7 см МТ+КО=7*5/7=5 см Проверка: ТО:ОК=(20/7):5=4/7
Две прямые дороги KM и PN, которые пересекаются где-то за лесом в недоступной точке С. Нужно найти расстояние от некоторого пункта А на дороге КМ к точке С пересечения дорог. Для этого обозначили на дороге PN пункт В так, чтобы можно было измерить расстояние АВ, и определили углы ВАМ и ABN. Объясните нахождения расстояния АС. Вычислите АС, если АВ = 800 м , ∠ВАМ = 85°, ∠АВN = 52° .
Объяснение: Таким , зная определенные теоремы геометрии, можно не ходить часами с линейкой по дороге измеряя длину АС, а ВЫЧИСЛИТЬ ее по теореме синусов .
Теорема синусов :" Стороны треугольника пропорциональны синусам противолежащих углов."
. Видимый и измеряемый отрезок пути АВ=800 м. Угол ∠С вычисляется по т. о сумме углов треугольника, т.к два доступных угла можно измерить на местности с простейшей астролябии ( можно изготовить в домашних условиях) : ∠С=180°-85°-52°=43°.
---------
Сделаем рисунок треугольника АВС и вписанного прямоугольника ТМКО
Треугольники МВК и АВС подобны - МК||АС, углы при основаниях равны по свойству параллельных прямых и секущей, и угол В - общий.
Пусть коэффициент отношения сторон прямоугольника будет х.
Тогда ТО=МК=4х,
МТ=КО=7х
Высота ВЕ ∆ МВК=ВН-ЕН=7-7х
Из подобия треугольников следует отношение их высот и оснований: ВН:ВЕ=АС:МК
7:(7-7х)=10:4х
28х=70-70х
98х=70
х=70:98=5/7 см ⇒
МК=ТО=4*5/7=20/7=2 4/7 см
МТ+КО=7*5/7=5 см
Проверка:
ТО:ОК=(20/7):5=4/7
Две прямые дороги KM и PN, которые пересекаются где-то за лесом в недоступной точке С. Нужно найти расстояние от некоторого пункта А на дороге КМ к точке С пересечения дорог. Для этого обозначили на дороге PN пункт В так, чтобы можно было измерить расстояние АВ, и определили углы ВАМ и ABN. Объясните нахождения расстояния АС. Вычислите АС, если АВ = 800 м , ∠ВАМ = 85°, ∠АВN = 52° .
Объяснение: Таким , зная определенные теоремы геометрии, можно не ходить часами с линейкой по дороге измеряя длину АС, а ВЫЧИСЛИТЬ ее по теореме синусов .
Теорема синусов :" Стороны треугольника пропорциональны синусам противолежащих углов."
. Видимый и измеряемый отрезок пути АВ=800 м. Угол ∠С вычисляется по т. о сумме углов треугольника, т.к два доступных угла можно измерить на местности с простейшей астролябии ( можно изготовить в домашних условиях) : ∠С=180°-85°-52°=43°.
, АС= ≈ ≈ 924 (м).