через точку Е - середину боковой стороны AB трапеции ABCD -проведена прямая, параллельная стороне CD и пересекающая основание AD в точке F. Найдите сторону CD, если EF = 10 см ( Не через теорему Пифагора, а по подобию треугольников )
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
Элементарно. Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Дано: ABCD - ромб, BD = 24см, AC = 10см;
Знайти: <A, <B, <C, <D;
Рішення.
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
sin = 5/13, sin ABO≈0.38 <ABO≈68 °, <BAO = 180 ° - <BOA- <ABO, <BAO = 180 ° -90 ° -68 ° = 22 °,
3) <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °
Відповідь: <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °.
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.