В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.
Трапеция - четырехугольник, и, поскольку в нее вписана окружность, сумма оснований равна сумме ее боковых сторон.
В равнобедренной трапеции высота делит большее основание на два отрезка, из которых больший равен полусумме оснований, а меньший - их полуразности.
Периметр трапеции АВСД равен р Следовательно, сумма боковых сторон равна р:2, сумма оснований равна р:2. Опустим высоту ВН.
Отрезок НД большего основания равен полусумме оснований и равен (р:2):2=р:4 Боковая сторона АВ равна половине полупериметра трапеции и равна (р:2):2=р:4 Из прямоугольного треугольника АВН найдем высоту ВН: ВН=АВ·sin (α)=(р:4)·sin (α)=(р·sin α):4
Площадь трапеции равна произведению высоты на полусумму оснований.
S АВСД=ВН·НД=(р:4)(р·sin (α):4)=(р²·sin α):16 ( единиц площади)
Площадь круга, вписанного в эту трапецию, находим по формуле
S=πr²
Высота трапеции - диаметр этого круга.
Соответственно, его радиус - половина высоты трапеции, r= ВН:2=(р·sin α):8 а площадь S= π·{р·sinα }²:64 ( единиц площади).
найдем площадь ромба через площадь четырех прямоугольных треугольников,из которых он состоит раздели ромб диагоналями на 4 равных прямоугольных треугольника,каждый треугольник получился с углами в 30,60 и 90 градусов. рассмотрим один из них отдельно,обозначив его АВС: у него гипотенуза(она же сторона ромба,назовем ее АВ) равна 8 см,а т.к против угла в 30 град лежит катет в 2 р меньше гипотенузы,то один из катетов (СВ) будет равен 4.По теореме Пифагора находим второй катет (АС): АВ^2=АС^2+СВ^2 АС^2=АВ^2-СВ^2 АС=корень квадратный из (АВ^2-СВ^2) АС=корень квадратный из (8^2-4^2)=корень кв из (64-16)=квадратный корень из 48=4 корня из 3 Площадь (S) прямоугольного треугольника АВС=(АС*СВ)/2 S=((4 корня из 3) *4)/2=(16 корней из 3)/2=8 корней из 3 умножаем S треугольника АВС на 4 и получаем площадь ромба S(ромба)=4S(АВС)=(8 корней из 3)*4=32 корня их 3
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.
Трапеция - четырехугольник, и, поскольку в нее вписана окружность, сумма оснований равна сумме ее боковых сторон.
В равнобедренной трапеции высота делит большее основание на два отрезка, из которых больший равен полусумме оснований, а меньший - их полуразности.
Периметр трапеции АВСД равен р
Следовательно,
сумма боковых сторон равна р:2,
сумма оснований равна р:2.
Опустим высоту ВН.
Отрезок НД большего основания равен полусумме оснований и равен (р:2):2=р:4
Боковая сторона АВ равна половине полупериметра трапеции и равна
(р:2):2=р:4
Из прямоугольного треугольника АВН найдем высоту ВН:
ВН=АВ·sin (α)=(р:4)·sin (α)=(р·sin α):4
Площадь трапеции равна произведению высоты на полусумму оснований.
S АВСД=ВН·НД=(р:4)(р·sin (α):4)=(р²·sin α):16 ( единиц площади)
Площадь круга, вписанного в эту трапецию, находим по формуле
S=πr²
Высота трапеции - диаметр этого круга.
Соответственно, его радиус - половина высоты трапеции,
r= ВН:2=(р·sin α):8
а площадь
S= π·{р·sinα }²:64 ( единиц площади).
найдем площадь ромба через площадь четырех прямоугольных треугольников,из которых он состоит
раздели ромб диагоналями на 4 равных прямоугольных треугольника,каждый треугольник получился с углами в 30,60 и 90 градусов.
рассмотрим один из них отдельно,обозначив его АВС:
у него гипотенуза(она же сторона ромба,назовем ее АВ) равна 8 см,а т.к против угла в 30 град лежит катет в 2 р меньше гипотенузы,то один из катетов (СВ) будет равен 4.По теореме Пифагора находим второй катет (АС):
АВ^2=АС^2+СВ^2
АС^2=АВ^2-СВ^2
АС=корень квадратный из (АВ^2-СВ^2)
АС=корень квадратный из (8^2-4^2)=корень кв из (64-16)=квадратный корень из 48=4 корня из 3
Площадь (S) прямоугольного треугольника АВС=(АС*СВ)/2
S=((4 корня из 3) *4)/2=(16 корней из 3)/2=8 корней из 3
умножаем S треугольника АВС на 4 и получаем площадь ромба
S(ромба)=4S(АВС)=(8 корней из 3)*4=32 корня их 3