Через точку К, лежащую между параллельными плоскостями Альфа и бэта проведены две прямые a и b, где альфа пересекает бету в точке А1. Прямая а пересекает плоскость бета в точке А2, прямая б пересекает плоскость бета в точке Б1 и Б2
В основании пирамиды лежит правильный треугольник ABC со стороной равной 6см.
S(осн.)= =9√3 см².
Высота правильной пирамиды падает в центр основания. Поэтому если DH высота пирамиды, а DM - апофема, то MH - радиус вписанной окружности в правильный треугольник. Т.к. по теореме о 3ёх перпендикулярах HM⊥AC.
=√3 см
В прямоугольном ΔDHM (∠H=90°) найдём гипотенузу DM по теореме Пифагора.
=√147 см
Боковые грани правильной пирамиды это равные треугольники.
12 см
Объяснение:
1) Острый угол, составляющий 2/3 прямого угла, равен:
90 · 2/3 = 60°.
2) Второй острый угол прямоугольного треугольника равен:
180 - 90 - 60 = 30°.
3) Меньший катет лежит против меньшего угла, то есть против угла 30°.
Катет, лежащий против угла 30°, равен половине гипотенузы.
Пусть х - меньший катет прямоугольного треугольника, тогда гипотенуза равна 2х. Составим уравнение и найдём х:
х + 2х = 18
3х = 18
х = 18 : 3 = 6 см - это длина меньшего катета.
4) Находим длину гипотенузы:
6 · 2 = 12 см
ответ: 12 см
В основании пирамиды лежит правильный треугольник ABC со стороной равной 6см.
S(осн.)= =9√3 см².
Высота правильной пирамиды падает в центр основания. Поэтому если DH высота пирамиды, а DM - апофема, то MH - радиус вписанной окружности в правильный треугольник. Т.к. по теореме о 3ёх перпендикулярах HM⊥AC.
=√3 см
В прямоугольном ΔDHM (∠H=90°) найдём гипотенузу DM по теореме Пифагора.
=√147 см
Боковые грани правильной пирамиды это равные треугольники.
S(бок.)= =9√147 см²
S(полн.) = S(осн.)+S(бок.) = 9√3 + 9√147 см²
ответ: 9√3 + 9√147 см².