Через точку k лежащую между параллельными плоскостями альфа и бета проведены прямые a и b первая прямая пересекает плоскости альфа и бета в точках a1 и b1, соответственно вторая в точках a2 и b2 вычислите длину отрезка kb2 если a1a2 : b1b2 =3: 5 a2b2 =16
1.Вертикальные углы — это пары углов с общей вершиной, которые образованы при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого.
Вертикальными называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла.
Вертикальные углы равны.
При пересечении двух прямых образуются две пары вертикальных углов
2.Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны
3.Равнобедренный треугольник (isosceles triangle)— это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием.
4.В равнобедренном треугольнике углы при основании равны
В равнобедренном треугольнике с основанием ВС проведем биссектрису АДТреугольники АВД=АСД по 1 признаку равенства т к АВ=АС по условию,АД-общая сторона <BAD=<DAC т к АД-биссектриса
В равных треугольниках против равных сторон лежат равные углы,поэтому <B=<C
5.Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.