площадь полной поверхности = площади боковой поверхности + 2 площади основания.
1) в оснвоании лежит прямоугольный треугольник. площадь находим как 1/2 произведения катетов , т..е 12*5: 2= 30 см^2/
2)площадь бококвой поверхности = половине периметра основания на высоту.
чтобы найти периметр , надо знать все три стороны треугольника. треугольник прямоугольный, поэтому гипотенузу находим по теореме пифагора. 12^2+5^2=144+25=169, гипотенуза равна 13.
3) ищем периметр 13+12+5=30 см.
4) ищем площадь боковой поверхности 30*10=300
5) площадь полной поверхности равна 300+2*30=360 см
Дано. Равносторонний треугольник АВС со стороной а=12√3. Найти расстояние от центра до его стороны.
Решение.
Центром равностороннего треугольника является точка пересечения медиан, высот, биссектрис и серединных перпендикуляров.
Проведем высоты (биссектрисы или медианы) в треугольнике.
Получили шесть равных прямоугольных треугольника, где один катет (ОМ) - это расстояние от центра до стороны треугольника АВС, а второй (АМ) - половина стороны треугольника равная 6√3, а углы равны 30*, 60* и 90*.
Искомое расстояние ОМ/АМ= tg30* (tg30*=√3/3). Тогда
площадь полной поверхности = площади боковой поверхности + 2 площади основания.
1) в оснвоании лежит прямоугольный треугольник. площадь находим как 1/2 произведения катетов , т..е 12*5: 2= 30 см^2/
2)площадь бококвой поверхности = половине периметра основания на высоту.
чтобы найти периметр , надо знать все три стороны треугольника. треугольник прямоугольный, поэтому гипотенузу находим по теореме пифагора. 12^2+5^2=144+25=169, гипотенуза равна 13.
3) ищем периметр 13+12+5=30 см.
4) ищем площадь боковой поверхности 30*10=300
5) площадь полной поверхности равна 300+2*30=360 см
подробнее - на -
ответ: 6.
Объяснение:
Дано. Равносторонний треугольник АВС со стороной а=12√3. Найти расстояние от центра до его стороны.
Решение.
Центром равностороннего треугольника является точка пересечения медиан, высот, биссектрис и серединных перпендикуляров.
Проведем высоты (биссектрисы или медианы) в треугольнике.
Получили шесть равных прямоугольных треугольника, где один катет (ОМ) - это расстояние от центра до стороны треугольника АВС, а второй (АМ) - половина стороны треугольника равная 6√3, а углы равны 30*, 60* и 90*.
Искомое расстояние ОМ/АМ= tg30* (tg30*=√3/3). Тогда
ОМ = АМ*tg30* = 6√3*√3/3=6.