Если трапеция равнобедренная, то углы при ее большем основании 60 град. Проводим высоты этой трапеции. Они отсекут на большом основании отрезки 3 см, 6 см(равный меньшему основанию) и 3 см. Рассматривая любой из получившихся прямоугольных треугольников, заметим, что в нем есть угол в 30 град. (так как углы при основании =60 град). А мы знаем из свойств прямоугольного треугольника, что против угла в 30 град. лежит сторона, равная половине гипотенузы (она 3 см). Тогда гипотенуза (она же боковая сторона трапеции) равна 3*2=6 см.Значит весь периметр равен: 6+6+6+12=30 см
В прямоугольном параллелограмме квадрат ее диагонали равен сумме квадратов длин ее сторон.
А1С2 = АА12 + АД2 + СД2.
АА12 = А1С2 – АД2+ СД2 = 676 – 64 – 36 = 576.
АА1 = 24 см.
ответ: Боковое ребро равно 24 см.
второй
ABCDA1B1C1D1 - параллелепипед
1) основание ABCD:
в треугольнике АВС
L B = 90 град.
AB = 6 см
BC = 8 см =>
AC^2 = AB^2 + BC^2 = 6^2 + 8^2 = 100 = 10^2 =>
AC = 10 см - диагональ основания
2) В треугольнике ACC1:
L ACC1 = 90 град.
AC = 10 см
AC1 = 26 см =>
CC1 = AC1^2 - AC^2 =
= 26^2 - 10^2 =
= (26+10)(26-10) =
= 36*16 = 6^2 * 4^2 =
= (6*4)^2 = 24^2 =>
CC1 = 24 см - высота параллелепипеда
Рассматривая любой из получившихся прямоугольных треугольников, заметим, что в нем есть угол в 30 град. (так как углы при основании =60 град). А мы знаем из свойств прямоугольного треугольника, что против угла в 30 град. лежит сторона, равная половине гипотенузы (она 3 см). Тогда гипотенуза (она же боковая сторона трапеции) равна 3*2=6 см.Значит весь периметр равен: 6+6+6+12=30 см