Из каждой вершины пятиугольника выходит две диагонали (сама с собой и соседними вершинами диагональ не образует), поэтому
5·2 = 10 - число отрезков, проведённых от всех вершин к противоположным.
При таком подсчёта каждая диагональ посчитана дважды (действительно, отрезки АС и СА - одна и та же диагональ), поэтому, чтобы найти число диагоналей выпуклого пятиугольника мы найденное количество отрезков разделим пополам:
АСДК - трапеция, основания АС=12 см и ДК=4 см
АВ = 12-4 = 8 см
АК = 12+4 = 16 см
По Пифагору
ВК² = АК²-АВ² = 16²-8² = 256-64 = 3*64
ВК = 8√3 см
∠ВАК = arccos(АВ/АК) = arccos(1/2) = 60°
∠ВКА = 90 - ∠ВАК = 30°
∠ДКА = ∠ВКА + 90 = 120°
Полная площадь трапеции
S(ACDK) = 1/2(AC+DK)*BK = 1/2(12+4)*8√3 = 64√3 см²
Площадь сектора большого круга (серая штриховка)
S₁₂ = πR²/360*α = π*12²*60/360 = π*12*12/6 = 24π см²
Площадь сектора малого круга (зелёная штриховка)
S₄ = πR²/360*α = π*4²*120/360 = π*16/3 = 16π/3 см²
И площадь странной фигуры около касательной
S = S(ACDK) - S₁₂ - S₄ = 64√3 - 24π - 16π/3 см²
S = 64√3 - 88π/3 см²
б) 5.
Объяснение:
Из каждой вершины пятиугольника выходит две диагонали (сама с собой и соседними вершинами диагональ не образует), поэтому
5·2 = 10 - число отрезков, проведённых от всех вершин к противоположным.
При таком подсчёта каждая диагональ посчитана дважды (действительно, отрезки АС и СА - одна и та же диагональ), поэтому, чтобы найти число диагоналей выпуклого пятиугольника мы найденное количество отрезков разделим пополам:
10 : 2 = 5.
ответ: 5 диагоналей.
Заметим, что иногда пользуются готовой формулой:
в выпуклом n-угольнике n(n-3) / 2 диагонали.