Через вершини А і В трикутника АВС проведено коло, яке перетинає сторони AC і ВС у точках DiE відповідно. Відомо, що AB = 16 см, ВС = 12 см, CD - 3 см. Знайдіть відрізок
Вписанный угол, который опирается на диаметр, равен 90 градусов. Углы К и F следовательно равны 90 градусов. Треугольники MKN и MFN - прямоугольные. Они равны по общей гипотенузе и катету KN = FN. А в равных треугольниках против равных сторон лежат равные углы. Против стороны FN лежит угол FMN, а против стороны KN лежит угол KMN. Стороны равны, значит равны и углы. Но, если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то и третьи углы у них равны. Значит, угол MNF равен углу MNK.
1) ОБозначим треугольник АВС, АВ=ВС=13 см, ВН=5 см.
∆ АВС равнобедренный, По свойству высоты проведенной к основанию равнобедренного треугольника, ВН= биссектриса и медиана. ⇒ АН=СН.
В ∆ АВН- отношение гипотенузы АВ и катета ВН=13:5, это треугольник из Пифагоровых троек, ⇒ АН=12 см. ( можно найти по т.Пифагора)
S (АВС)=ВН• АС:2=5•12=60 см²
* * *
2) Полное условие: В параллелограмме АВСД АВ=8 см, АД=10 см, угол ВАД=30°. Найдите площадь параллелограмма.
Одна из формул площади параллелограмма
S=a•b•sinα, где а и b соседние стороны, α - угол между ними.
S=8•10•1/2=40 см²
* * *
3) Высота данной трапеции, проведенная из вершины С тупого угла, параллельна и равна стороне АВ ( обе перпендикулярны АД)
В ∆ СНД острый угол СДН=45°, следовательно, угол ДСН=45°, ⇒ НД=СН=10 см.
В прямоугольнике АВСН сторона АН=ВС=18-10=8 см
S (АВСД)= 0,5•(АВ+АД)•СН=0,5•26•10=130 см²
Углы К и F следовательно равны 90 градусов.
Треугольники MKN и MFN - прямоугольные.
Они равны по общей гипотенузе и катету KN = FN.
А в равных треугольниках против равных сторон лежат равные углы.
Против стороны FN лежит угол FMN, а против стороны KN лежит угол KMN.
Стороны равны, значит равны и углы. Но, если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то и третьи углы у них равны.
Значит, угол MNF равен углу MNK.