Через вершину а прямокутника abcd проведено пряму al перпендикулярну до його площини. відомо що ld = 10 см, lc= 14, lb =12. знайдіть al та площу прямокутника abcd
Утверждение В) верно, но только для прямых, лежащих в одной плоскости.
Объяснение:
Определение: "Две прямые, пересекающиеся под прямым углом, называются перпендикулярными" (для плоскости).
Определение: "Две прямые называются перпендикулярными, если угол между ними равен 90°". (для пространства). При этом они не имеют общей точки.
Утверждение А) не верно, так как отрезок по определению - часть прямой, ограниченная двумя точками. Отрезки, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
Утверждение Б) не верно по этой же причине, так как луч - это часть прямой, имеющий начальную точку и его можно продолжить только в одну сторону. Лучи, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
Утверждение В) верно, если прямые лежат в одной плоскости.
Утверждение Г) не верно по причине, указанной для утверждений А и Б.
Ну вроде как площадь находится формулами S = 4пR квадрат
R для каждого шара свой это 12 и 18, П - это постоянная 3,14
Можно сначала найти площадь каждого шара 4 * 3,14 * 12 в квадрате + 4*3,14*144= 1808,64
Второй шар по той же формуле ответ будет 4069,44
Потом они должны сложится чтобы получилась 1 общая площадь
Объём находится по формуле v= 4\3 (дробь четыре третьих) * П* R в кубе
получаем 4\3 * П * 12 в кубе = 4\3 * П * 1728 = 4\3 * П * 1728 = 2304 * П = 7238,23
Потом то же решение только вместо 12 ставим 18, и складываем
Утверждение В) верно, но только для прямых, лежащих в одной плоскости.
Объяснение:
Определение: "Две прямые, пересекающиеся под прямым углом, называются перпендикулярными" (для плоскости).
Определение: "Две прямые называются перпендикулярными, если угол между ними равен 90°". (для пространства). При этом они не имеют общей точки.
Утверждение А) не верно, так как отрезок по определению - часть прямой, ограниченная двумя точками. Отрезки, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
Утверждение Б) не верно по этой же причине, так как луч - это часть прямой, имеющий начальную точку и его можно продолжить только в одну сторону. Лучи, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
Утверждение В) верно, если прямые лежат в одной плоскости.
Утверждение Г) не верно по причине, указанной для утверждений А и Б.