Через вершину B треугольника АВС проведена прямая ВК, параллельная стороне АС. Известно, что угол КВС равен 70° и АВ=ВС. Найдите углы треугольника АВС.
Вот забавное решение, я только поэтому и пишу ,что решение очень симпатичное, эту элементарную задачу можно решить миллионом Если взять ТРИ ТАКИХ треугольника, и совместить их так, чтобы основания образовали правильный треугольник (а вершины были бы снаружи этого треугольника), то боковые стороны этих треугольников образуют правильный шестиугольник. В самом деле, углы при всех вершинах шестиугольника будут 120° (30° + 30° + 60° = 120°), и все стороны равны, в данном случае 5. Окружность, описанная вокруг такого шестиугольника, будет так же и окружностью, описанной вокруг любого из трех первоначальных треугольников. Поскольку радиус окружности, описанной вокруг правильного шестиугольника, равен стороне, ответ 5. :
Все грани прямоугольного параллелепипеда - прямоугольники.
Пусть ребра основания равны 4 и 4 см, а боковое ребро 2 см.
Тогда боковое ребро - наименьшее ребро (все боковые ребра равны). Осталось выяснить, какая из диагоналей, скрещивающаяся с данным ребром, наибольшая.
Так как ребра основания равны, то боковые грани - равные прямоугольники. По теореме Пифагора вычислим диагональ одной боковой грани:
DC₁ = √(DC² + CC₁²) = √(16 + 4) = √20 = 2√5 см
Диагональ основания:
BD = √(AB² + AD²) = √(16 + 16) = √32 = 4√2 см
Диагональ основания больше. Значит надо найти расстояние от ребра АА₁ до BD.
АО⊥АА₁ так как ребро АА₁ перпендикулярно плоскости АВС, а АО лежит в этой плоскости,
АО⊥BD как диагонали квадрата, значит АО - искомое расстояние.
АО = 1/2BD = 1/2 · 4√2 = 2√2 см (так как диагонали квадрата равны и точкой пересечения делятся пополам)
Если взять ТРИ ТАКИХ треугольника, и совместить их так, чтобы основания образовали правильный треугольник (а вершины были бы снаружи этого треугольника), то боковые стороны этих треугольников образуют правильный шестиугольник. В самом деле, углы при всех вершинах шестиугольника будут 120° (30° + 30° + 60° = 120°), и все стороны равны, в данном случае 5. Окружность, описанная вокруг такого шестиугольника, будет так же и окружностью, описанной вокруг любого из трех первоначальных треугольников. Поскольку радиус окружности, описанной вокруг правильного шестиугольника, равен стороне, ответ 5. :