Через вершину конуса і хорду основи проведено площину, яка утворює з основою конуса кут 60. Знайти обєм конуса, якщо цю хорду видно з центра основи конуса пiд кутом 90 i вона вiддалена вiд центра основи на 6 см
2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12 2BC = 12 BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
1. S(ABCD) = BC•CD = 6•3 = 18 квадратных сантиметров;
ответ: S(ABCD) = 18 квадратных сантиметров.
•Задание 6
1. Фигура ABCD - прямоугольник, следовательно все углы равняются 90°. Рассмотрим треугольник ACD - прямоугольный, так как угол ADC = 90°, угол ACD = 60°, следовательно угол CAD = 90° - угол ACD = 30°;
2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
3. S(ABCD) = AD•CD = 10•6 = 60 квадратных сантиметров;
ответ: S(ABCD) = 60 квадратных сантиметров.
•Задание 7
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC
AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12
2BC = 12
BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
ответ: S(ABCD) = 108 сантиметров квадратных.
Объяснение:
При вращении прямоугольника вокруг стороны 8 см получается цилиндр с высотой 8 см и радиусом основания 6 см.
Площадь полной поверхности цилиндра равна сумме площадей боковой поверхности и удвоенной площади основания.
Площадь боковой поверхности - произведение длины окружности основания и высоты цилиндра:
Sбок=L*Н; L=2πr=2π*6=12π, Н=8, Sбок=12π*8=96π см²;
Sосн=πr²=π*6²=36π; 2Sосн=72π см²;
Sпол.пов.=Sбок+2Sосн=96π+72π=168π см².
Объем цилиндра - произведение площади основания на высоту цилиндра.
Vцил.=Sосн*Н=36π*8=288π см³.