Через вершину конуса проведено сечение под углом х к плоскости основания конуса. расстояние от центра основания конуса до плоскости сечения равно у. найти площадь сечения если оно отсекает от окружности основания дугу z
(5) (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6) (5) – очевидно. (4) (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние , т.е. является центром описанной около этого треугольника окружности радиуса .
(8) (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы.
(8) (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то BAC = BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом,
Действительно: CB₁/AB₁=BC/BA =14/15 (свойство биссектрисы BB₁ в ΔABC) ⇒ CB₁=14k ,AB₁ =15k ,CA=CB₁+AB₁ =29k ⇒ CB₁/CA =14/29. --- аналогично : A₁P/PA=BA₁/BA =7/15 (свойство биссектрисы BP в ΔABA₁) ⇒A₁P=7m, PA =15m , A₁A=A₁P+PA) =22m ⇒ A₁P/A₁A =7/22.
Таким образом получили: S(A₁PB₁C) =S*14/29 -(S/2)*(7/22). Площадь треугольника вычисляем по формуле Герона : S =√p(p-a)(p-b)(p-c) =√21(21-14)(21-15)(21-13) =√21*7*6*8 = √(7*7*3*3*2*2*4) =7*3*4 =84.
(5) (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6) (5) – очевидно. (4) (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние , т.е. является центром описанной около этого треугольника окружности радиуса .
BDC + CDA + ADB = BAC+ CBA + ACB = 180o.(8) (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы.
(8) (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то BAC = BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом,
S(A₁PB₁C) =S(BCB₁) - S(BA₁P) =(CB₁/CA)*S -(A₁P/A₁A)*(S/2) ,
где CB₁/CA=14/29 и A₁P/A₁A=7/22 .
Действительно:
CB₁/AB₁=BC/BA =14/15 (свойство биссектрисы BB₁ в ΔABC) ⇒ CB₁=14k ,AB₁ =15k ,CA=CB₁+AB₁ =29k ⇒ CB₁/CA =14/29.
---
аналогично :
A₁P/PA=BA₁/BA =7/15 (свойство биссектрисы BP в ΔABA₁) ⇒A₁P=7m, PA =15m , A₁A=A₁P+PA) =22m ⇒ A₁P/A₁A =7/22.
Таким образом получили: S(A₁PB₁C) =S*14/29 -(S/2)*(7/22).
Площадь треугольника вычисляем по формуле Герона :
S =√p(p-a)(p-b)(p-c) =√21(21-14)(21-15)(21-13) =√21*7*6*8 =
√(7*7*3*3*2*2*4) =7*3*4 =84.
S(A₁PB₁C) =84*(14/29) -42*(7/22) =42*7(4/29 -1/22) =21*7*59/319≈ 27,2 .