Через вершину прямого угла в треугольника АВС к его плоскости проведен перпендикуляр BM. Расстояние точки М до прямой АС равно 13 см. Найдите расстояние от точки М до плоскости треугольника, если АС-25 см, AB=15 см +рисунок и подробное разъяснение действий.
Через вершину прямого угла в треугольника АВС к его плоскости проведен перпендикуляр BM. Расстояние точки М до прямой АС равно 13 см. Найдите расстояние от точки М до плоскости треугольника, если АС-25 см, AB=15 см
Объяснение:
1)Расстоянием от точки до плоскости есть длина перпендикуляра к плоскости -отрезок ВМ .
Расстоянием от точки до прямой является перпендикуляр от точки до прямой. Пусть MH⊥AC , тогда ВН⊥АС по т. о трех перпендикулярах.
2) ΔВМН-прямоугольный , по т. Пифагора , ВМ=√(МН²-ВН²) . Необходимо найти ВН.
3) Найдем предварительно АН (*) : ВА²=АН*АС ⇒ 225=АН*25 ,
АН=9 см
3)ΔВАН -прямоугольный ВН=√(15²-9²)=12( см)
4) ВМ=√(13²-12²)=5 ( см)
===========================
(*)Свойства катетов прямоугольного треугольника: Квадрат катета равен произведению его проекции на гипотенузу.