Углы ВАD и ВСЕ - внешние углы треугольника АВС. Из вершины В проведены перпендикуляры ВМ и ВК к биссектрисам углов ВАD и все соответственно. Найти отрезок МК, если периметр треугольника АВС равен 10 см
* * *
Продолжим ВМ и ВК до пересечения в т.Р и т.Т с прямой, содержащей сторону АС. В треугольнике РАВ отрезок АМ биссектриса угла РАВ, угол РМА=ВМА=90°. Треугольники РАМ и ВАМ равны по двум углам, прилежащим к общей стороне АМ. Следовательно, РА=АВ и РМ=МВ ( точка М - середина РВ).
Аналогично в ∆ ВСТ ВК=ТК и СТ=ВС, а точка К - середина ВТ. Отрезок МК - средняя линия ∆ РВТ.
Поэтому РА+АС+СТ=ВА+АС+ВС=периметр АВС. МК=Р(АВС):2=10:2=5 см
16√3 см²
Объяснение:
Дано: ΔАВС - равнобедренный, ВС=АВ=8 см.
∠А/∠В=1/4.
Найти S(АВС).
Пусть ∠А=∠С=х° т.к. у равнобедренного треугольника углы при основании равны
Тогда ∠В=4х°.
Проведем высоту ВН, которая является и биссектрисой ∠В по свойству высоты равнобедренного треугольника.
Тогда ∠АВН=1/2 ∠В=2х°
Рассмотрим ΔАВН - прямоугольный, ∠А+∠АВН=90° по свойству острых углов прямоугольного треугольника. Составим уравнение:
х+2х=90; 3х=90; х=30. ∠А=30°, тогда ВН=1/2 АВ = 8:2=4 см по свойству катета, лежащего против угла 30 градусов.
По теореме Пифагора АН=(√АВ²-ВН²)=√(64-16)=√48=4√3 см.
АС=2 АН=4√3 * 2 = 8√3 см
S(АВС)=1/2 * АС * ВН = 1/2 * 8√3 * 4 = 16√3 см²
ответ: 5 см
Объяснение:
Углы ВАD и ВСЕ - внешние углы треугольника АВС. Из вершины В проведены перпендикуляры ВМ и ВК к биссектрисам углов ВАD и все соответственно. Найти отрезок МК, если периметр треугольника АВС равен 10 см
* * *
Продолжим ВМ и ВК до пересечения в т.Р и т.Т с прямой, содержащей сторону АС. В треугольнике РАВ отрезок АМ биссектриса угла РАВ, угол РМА=ВМА=90°. Треугольники РАМ и ВАМ равны по двум углам, прилежащим к общей стороне АМ. Следовательно, РА=АВ и РМ=МВ ( точка М - середина РВ).
Аналогично в ∆ ВСТ ВК=ТК и СТ=ВС, а точка К - середина ВТ. Отрезок МК - средняя линия ∆ РВТ.
Поэтому РА+АС+СТ=ВА+АС+ВС=периметр АВС. МК=Р(АВС):2=10:2=5 см