Через вершины a и b треугольника acb проведены прямые перпендикулярные к биссектрисе угла acb они пересекают луч cb и сторону cа в точках д и е соответственно найдите длину отрезка ac если cе равно 8 и bd равно 3
Если угол АОС=90, то дуга на котоую он опирается, дуга АС=90. Угол АВС вписвнный и тоже опирается на дугу АС, но измеряется ее половиной, а значит = 45 гр.
Угол АВС=угол АВО+угол ОВС
угол АВО=45-15=30 гр.
По условию расстояние от т.О до прямой АВ=6 см,пусть это расстояние ОК, ОК перпендикуляреа АВ, значит треуг. ОВК прямоугольный с углом КВО=30 гр., ОК=6 см, значит ОВ=12 см(против угла в 30 гр. лежит катет в два раза меньше гипотенузы). ОВ расстояние от центра описанной окружности до вершины, значмт это радиус описанной окружности.
Если угол АОС=90, то дуга на котоую он опирается, дуга АС=90. Угол АВС вписвнный и тоже опирается на дугу АС, но измеряется ее половиной, а значит = 45 гр.
Угол АВС=угол АВО+угол ОВС
угол АВО=45-15=30 гр.
По условию расстояние от т.О до прямой АВ=6 см,пусть это расстояние ОК, ОК перпендикуляреа АВ, значит треуг. ОВК прямоугольный с углом КВО=30 гр., ОК=6 см, значит ОВ=12 см(против угла в 30 гр. лежит катет в два раза меньше гипотенузы). ОВ расстояние от центра описанной окружности до вершины, значмт это радиус описанной окружности.
Сделаем рисунок к задаче.
Если соединить центр окружности с вершинами А, В и С, получим три равнобедренных треугольника.
1) прямоугольный с углом 90° при вершине О.
2) тупоугольный, углы при основании ВС равны по 15°. Центравльный угол равен
180-2*15=150°
2)тупоугольный АОВ
Центральный угол в треугольнике АОВ равен
360=90-150=120 °
АВ отрезком, равным расстоянию от О до АВ, делится пополам.
угол АВО в образовавшемся треугольнике при вершине В равен 30°
Радиус в этом треугольнике - его гипотенуза.
Гипотенуза вдвое больше катета, противолежащего углу 30°
Она равна 2*6=12 см
Радиус окружности равен 12 см.